File size: 5,058 Bytes
119dbbc
 
 
 
 
1d0ba1f
119dbbc
 
1d0ba1f
119dbbc
 
 
 
 
1d0ba1f
119dbbc
1d0ba1f
119dbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d0ba1f
119dbbc
 
 
 
 
 
 
 
 
 
1d0ba1f
 
119dbbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    from fastapi import FastAPI, HTTPException, status, APIRouter, Request
    from pydantic import BaseModel, ValidationError
    from transformers import AutoTokenizer, AutoModelForMaskedLM
    import torch
    import logging

    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)

    app = FastAPI(
        title="NeuroBERT-Tiny Masked Language Model API",
        description="An API to perform Masked Language Modeling using the boltuix/NeuroBERT-Tiny model.",
        version="1.0.0"
    )

    api_router = APIRouter()

    try:
        logger.info("Loading tokenizer and model for boltuix/NeuroBERT-Tiny...")
        tokenizer = AutoTokenizer.from_pretrained("boltuix/NeuroBERT-Tiny")
        model = AutoModelForMaskedLM.from_pretrained("boltuix/NeuroBERT-Tiny")
        model.eval()
        logger.info("Model loaded successfully.")
    except Exception as e:
        logger.exception("Failed to load model or tokenizer during startup!")
        raise RuntimeError(f"Could not load model: {e}")

    class InferenceRequest(BaseModel):
        text: str

    class PredictionResult(BaseModel):
        sequence: str
        score: float
        token: int
        token_str: str

    @api_router.post(
        "/predict", # IMPORTANT: Prediction endpoint is now /predict
        response_model=list[PredictionResult],
        summary="Predicts masked tokens in a given text",
        description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
    )
    async def predict_masked_lm(request: InferenceRequest):
        try:
            text = request.text
            logger.info(f"Received prediction request for text: '{text}'")

            inputs = tokenizer(text, return_tensors="pt")
            with torch.no_grad():
                outputs = model(**inputs)

            logits = outputs.logits
            masked_token_id = tokenizer.convert_tokens_to_ids("[MASK]")

            masked_token_indices = torch.where(inputs["input_ids"] == masked_token_id)[1]

            if not masked_token_indices.numel():
                logger.warning("No [MASK] token found in the input text. Returning 400 Bad Request.")
                raise HTTPException(
                    status_code=status.HTTP_400_BAD_REQUEST,
                    detail="Input text must contain at least one '[MASK]' token."
                )

            results = []
            for masked_index in masked_token_indices:
                top_5_logits = torch.topk(logits[0, masked_index], 5).values
                top_5_tokens = torch.topk(logits[0, masked_index], 5).indices

                for i in range(5):
                    score = torch.nn.functional.softmax(logits[0, masked_index], dim=-1)[top_5_tokens[i]].item()
                    predicted_token_id = top_5_tokens[i].item()
                    predicted_token_str = tokenizer.decode(predicted_token_id)
                    
                    temp_input_ids = inputs["input_ids"].clone()
                    temp_input_ids[0, masked_index] = predicted_token_id
                    full_sequence = tokenizer.decode(temp_input_ids[0], skip_special_tokens=True)

                    results.append(PredictionResult(
                        sequence=full_sequence,
                        score=score,
                        token=predicted_token_id,
                        token_str=predicted_token_str
                    ))
            
            logger.info(f"Successfully processed request. Returning {len(results)} predictions.")
            return results
        
        except ValidationError as e:
            logger.error(f"Validation error for request: {e.errors()}")
            raise HTTPException(
                status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
                detail=e.errors()
            )
        except HTTPException:
            raise
        except Exception as e:
            logger.exception(f"An unexpected error occurred during prediction: {e}")
            raise HTTPException(
                status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
                detail=f"An internal server error occurred: {e}"
            )

    @api_router.get(
        "/health", # IMPORTANT: Health check endpoint is /health
        summary="Health Check",
        description="Returns a simple message indicating the API is running."
    )
    async def health_check():
        logger.info("Health check endpoint accessed.")
        return {"message": "NeuroBERT-Tiny API is running!"}

    app.include_router(api_router)

    @app.api_route("/{path_name:path}", methods=["GET", "POST", "PUT", "DELETE", "PATCH", "OPTIONS", "HEAD"])
    async def catch_all(request: Request, path_name: str):
        logger.warning(f"Unhandled route accessed: {request.method} {path_name}")
        raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail="Not Found")

    if __name__ == "__main__":
        import uvicorn
        uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")