Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,150 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
import torch
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load model globally to avoid reloading on each request
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class InferenceRequest(BaseModel):
|
|
|
|
|
|
|
|
|
14 |
text: str
|
15 |
|
16 |
class PredictionResult(BaseModel):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
@app.post(
|
|
|
|
|
|
|
|
|
|
|
23 |
async def predict_masked_lm(request: InferenceRequest):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
#
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
async def root():
|
|
|
|
|
|
|
|
|
64 |
return {"message": "NeuroBERT-Tiny API is running!"}
|
65 |
|
|
|
|
|
66 |
if __name__ == "__main__":
|
67 |
import uvicorn
|
68 |
-
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, status
|
2 |
+
from pydantic import BaseModel, ValidationError
|
3 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
4 |
import torch
|
5 |
+
import logging
|
6 |
|
7 |
+
# Configure logging to output information, warnings, and errors
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
app = FastAPI(
|
12 |
+
title="NeuroBERT-Tiny Masked Language Model API",
|
13 |
+
description="An API to perform Masked Language Modeling using the boltuix/NeuroBERT-Tiny model.",
|
14 |
+
version="1.0.0"
|
15 |
+
)
|
16 |
|
17 |
# Load model globally to avoid reloading on each request
|
18 |
+
# This block runs once when the FastAPI application starts.
|
19 |
+
try:
|
20 |
+
logger.info("Loading tokenizer and model for boltuix/NeuroBERT-Tiny...")
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("boltuix/NeuroBERT-Tiny")
|
22 |
+
model = AutoModelForMaskedLM.from_pretrained("boltuix/NeuroBERT-Tiny")
|
23 |
+
model.eval() # Set model to evaluation mode for inference
|
24 |
+
logger.info("Model loaded successfully.")
|
25 |
+
except Exception as e:
|
26 |
+
logger.exception("Failed to load model or tokenizer during startup!")
|
27 |
+
# Depending on the deployment, you might want to raise an exception here
|
28 |
+
# to prevent the app from starting if the model can't be loaded.
|
29 |
+
# For now, we'll let it potentially start and fail on prediction.
|
30 |
+
raise RuntimeError(f"Could not load model: {e}")
|
31 |
|
32 |
class InferenceRequest(BaseModel):
|
33 |
+
"""
|
34 |
+
Request model for the /predict endpoint.
|
35 |
+
Expects a single string field 'text' containing the sentence with [MASK] tokens.
|
36 |
+
"""
|
37 |
text: str
|
38 |
|
39 |
class PredictionResult(BaseModel):
|
40 |
+
"""
|
41 |
+
Response model for individual predictions from the /predict endpoint.
|
42 |
+
"""
|
43 |
+
sequence: str # The full sequence with the predicted token filled in
|
44 |
+
score: float # Confidence score of the prediction
|
45 |
+
token: int # The ID of the predicted token
|
46 |
+
token_str: str # The string representation of the predicted token
|
47 |
|
48 |
+
@app.post(
|
49 |
+
"/predict",
|
50 |
+
response_model=list[PredictionResult],
|
51 |
+
summary="Predicts masked tokens in a given text",
|
52 |
+
description="Accepts a text string with '[MASK]' tokens and returns top 5 predictions for each masked position."
|
53 |
+
)
|
54 |
async def predict_masked_lm(request: InferenceRequest):
|
55 |
+
"""
|
56 |
+
Predicts the most likely tokens for [MASK] positions in the input text.
|
57 |
+
Returns a list of top 5 predictions for each masked token, including the full sequence, score, and token details.
|
58 |
+
"""
|
59 |
+
try:
|
60 |
+
text = request.text
|
61 |
+
logger.info(f"Received prediction request for text: '{text}'")
|
62 |
+
|
63 |
+
# Tokenize the input text
|
64 |
+
inputs = tokenizer(text, return_tensors="pt")
|
65 |
+
|
66 |
+
# Perform inference without tracking gradients
|
67 |
+
with torch.no_grad():
|
68 |
+
outputs = model(**inputs)
|
69 |
+
|
70 |
+
logits = outputs.logits
|
71 |
+
masked_token_id = tokenizer.convert_tokens_to_ids("[MASK]")
|
72 |
+
|
73 |
+
# Find all masked token positions in the input IDs
|
74 |
+
masked_token_indices = torch.where(inputs["input_ids"] == masked_token_id)[1]
|
75 |
+
|
76 |
+
if not masked_token_indices.numel():
|
77 |
+
logger.warning("No [MASK] token found in the input text.")
|
78 |
+
raise HTTPException(
|
79 |
+
status_code=status.HTTP_400_BAD_REQUEST,
|
80 |
+
detail="Input text must contain at least one '[MASK]' token."
|
81 |
+
)
|
82 |
+
|
83 |
+
results = []
|
84 |
+
# Iterate over each masked token found in the input
|
85 |
+
for masked_index in masked_token_indices:
|
86 |
+
# Get top 5 predictions (logits and their corresponding token IDs) for the current masked position
|
87 |
+
top_5_logits = torch.topk(logits[0, masked_index], 5).values
|
88 |
+
top_5_tokens = torch.topk(logits[0, masked_index], 5).indices
|
89 |
+
|
90 |
+
# For each of the top 5 predictions
|
91 |
+
for i in range(5):
|
92 |
+
# Calculate the softmax score for the predicted token
|
93 |
+
score = torch.nn.functional.softmax(logits[0, masked_index], dim=-1)[top_5_tokens[i]].item()
|
94 |
+
predicted_token_id = top_5_tokens[i].item()
|
95 |
+
predicted_token_str = tokenizer.decode(predicted_token_id)
|
96 |
+
|
97 |
+
# Create a temporary input_ids tensor to replace the [MASK] token
|
98 |
+
# with the current predicted token for generating the full sequence.
|
99 |
+
temp_input_ids = inputs["input_ids"].clone()
|
100 |
+
temp_input_ids[0, masked_index] = predicted_token_id
|
101 |
+
|
102 |
+
# Decode the entire sequence, skipping special tokens, to get the complete predicted sentence.
|
103 |
+
full_sequence = tokenizer.decode(temp_input_ids[0], skip_special_tokens=True)
|
104 |
+
|
105 |
+
# Append the prediction result to our list
|
106 |
+
results.append(PredictionResult(
|
107 |
+
sequence=full_sequence,
|
108 |
+
score=score,
|
109 |
+
token=predicted_token_id,
|
110 |
+
token_str=predicted_token_str
|
111 |
+
))
|
112 |
+
|
113 |
+
logger.info(f"Successfully processed request. Returning {len(results)} predictions.")
|
114 |
+
return results
|
115 |
+
|
116 |
+
except ValidationError as e:
|
117 |
+
logger.error(f"Validation error for request: {e.errors()}")
|
118 |
+
raise HTTPException(
|
119 |
+
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
|
120 |
+
detail=e.errors()
|
121 |
+
)
|
122 |
+
except HTTPException:
|
123 |
+
# Re-raise explicit HTTPExceptions (e.g., 400 for missing [MASK])
|
124 |
+
raise
|
125 |
+
except Exception as e:
|
126 |
+
logger.exception(f"An unexpected error occurred during prediction: {e}")
|
127 |
+
raise HTTPException(
|
128 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
129 |
+
detail=f"An internal server error occurred: {e}"
|
130 |
+
)
|
131 |
+
|
132 |
+
@app.get(
|
133 |
+
"/",
|
134 |
+
summary="Health Check",
|
135 |
+
description="Returns a simple message indicating the API is running."
|
136 |
+
)
|
137 |
async def root():
|
138 |
+
"""
|
139 |
+
Provides a basic health check endpoint for the API.
|
140 |
+
"""
|
141 |
+
logger.info("Health check endpoint accessed.")
|
142 |
return {"message": "NeuroBERT-Tiny API is running!"}
|
143 |
|
144 |
+
# This block is for running the app directly, typically used for local development.
|
145 |
+
# In a Docker container, Uvicorn (or Gunicorn) is usually invoked via the CMD in Dockerfile.
|
146 |
if __name__ == "__main__":
|
147 |
import uvicorn
|
148 |
+
# The 'reload=True' is great for local development for auto-reloading changes.
|
149 |
+
# For production in a Docker container, it's typically omitted for performance.
|
150 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, log_level="info")
|