CopyTransformer / app.py
bashyaldhiraj2067's picture
Upload folder using huggingface_hub
b8930e7 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from torch.utils.data import Dataset
from transformers import PreTrainedModel, PretrainedConfig, Trainer, TrainingArguments
from datasets import load_dataset
import numpy as np
# =====================
# 1. Load Dataset Subsets
# =====================
dataset = load_dataset("bashyaldhiraj2067/500k_copy_error_dataset")
train_subset = dataset["train"].select(range(int(len(dataset["train"]) * 0.1)))
test_subset = dataset["test"].select(range(int(len(dataset["test"]) * 0.1)))
print(f"Subset train size: {len(train_subset)}")
print(f"Subset test size: {len(test_subset)}")
# =====================
# 2. Tokenizer
# =====================
special_tokens = ["<pad>", "<s>", "</s>", "<unk>"]
nepali_chars = list("अआइईउऊऋॠऌॡऎएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसह्ािीुूृॄेैोौंंःँ।०१२३४५६७८९,.;?!़ॅंःॊॅऒऽॉड़ॐ॥ऑऱफ़ढ़")
char_vocab = special_tokens + nepali_chars
char2id = {char: idx for idx, char in enumerate(char_vocab)}
id2char = {idx: char for char, idx in char2id.items()}
vocab_size = len(char2id)
class CharTokenizer:
def __init__(self, char2id, id2char, vocab_size):
self.char2id = char2id
self.id2char = id2char
self.pad_token_id = char2id["<pad>"]
self.unk_token_id = char2id["<unk>"]
self.bos_token_id = char2id["<s>"]
self.eos_token_id = char2id["</s>"]
self.vocab_size = vocab_size
def encode(self, text, max_length=128):
ids = [self.char2id.get(ch, self.unk_token_id) for ch in text]
ids = ids[:max_length]
return ids + [self.pad_token_id] * (max_length - len(ids))
def decode(self, ids):
return ''.join([self.id2char.get(i, '') for i in ids if i != self.pad_token_id])
def __call__(self, text, text_target=None, max_length=128):
input_ids = self.encode(text, max_length)
input_ids = torch.clamp(torch.tensor(input_ids), max=self.vocab_size - 1).tolist()
result = {"input_ids": input_ids, "attention_mask": [1 if i != self.pad_token_id else 0 for i in input_ids]}
if text_target:
labels = self.encode(text_target, max_length)
result["labels"] = labels
return result
tokenizer = CharTokenizer(char2id, id2char, vocab_size=vocab_size)
# =====================
# 3. Dataset
# =====================
class CopyDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
noisy = self.data[idx]['incorrect']
clean = self.data[idx]['correct']
return self.tokenizer(noisy, text_target=clean, max_length=self.max_length)
train_dataset = CopyDataset(train_subset, tokenizer)
eval_dataset = CopyDataset(test_subset, tokenizer)
# =====================
# 4. Transformer with Copy Mechanism
# =====================
class TransformerCopyConfig(PretrainedConfig):
def __init__(self, vocab_size=len(char2id), **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
# --- Model Components ---
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
return x + self.pe[:, :x.size(1)]
class TransformerCopyModel(nn.Module):
def __init__(self, vocab_size, d_model=256, nhead=8, num_layers=4, dim_ff=512, dropout=0.1):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_ff, dropout)
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_ff, dropout)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers)
self.copy_attention = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.copy_gate = nn.Linear(d_model * 2, 1)
self.output_layer = nn.Linear(d_model, vocab_size)
def forward(self, input_ids, attention_mask=None, labels=None):
src = input_ids
tgt = labels[:, :-1]
tgt_y = labels[:, 1:]
src_embed = self.embedding(src)
tgt_embed = self.embedding(tgt)
src_embed = self.positional_encoding(src_embed)
tgt_embed = self.positional_encoding(tgt_embed)
src_mask = (src == tokenizer.pad_token_id)
tgt_mask = (tgt == tokenizer.pad_token_id)
memory = self.encoder(src_embed.transpose(0, 1), src_key_padding_mask=src_mask)
output = self.decoder(
tgt_embed.transpose(0, 1),
memory,
tgt_key_padding_mask=tgt_mask,
memory_key_padding_mask=src_mask
)
attn_output, attn_weights = self.copy_attention(output, memory, memory, key_padding_mask=src_mask)
concat = torch.cat([output, attn_output], dim=-1)
copy_prob = torch.sigmoid(self.copy_gate(concat))
gen_logits = self.output_layer(output)
gen_probs = F.softmax(gen_logits, dim=-1)
loss = F.cross_entropy(
gen_logits.transpose(0, 1).reshape(-1, gen_logits.size(-1)),
tgt_y.reshape(-1),
ignore_index=tokenizer.pad_token_id
) if labels is not None else None
return {"loss": loss, "logits": gen_logits.transpose(0, 1)}
# --- HF Wrapper ---
class TransformerCopyHF(PreTrainedModel):
config_class = TransformerCopyConfig
def __init__(self, config):
super().__init__(config)
self.model = TransformerCopyModel(config.vocab_size)
def forward(self, input_ids, attention_mask=None, labels=None):
return self.model(input_ids, attention_mask, labels)
model = TransformerCopyHF.from_pretrained("bashyaldhiraj2067/remove1_copy_transformer")
model.eval()
# =====================
# 5. Inference Function
# =====================
def generate_clean_text(input_text, max_length=128):
model_input = tokenizer.encode(input_text, max_length=max_length)
input_ids = torch.tensor([model_input])
# Create dummy target input (just start token)
decoder_input = torch.tensor([[tokenizer.bos_token_id]])
output_tokens = []
for _ in range(max_length):
with torch.no_grad():
out = model(input_ids=input_ids, labels=torch.cat([decoder_input, torch.zeros((1, 1), dtype=torch.long)], dim=1))
next_token_logits = out["logits"][:, -1, :]
next_token = torch.argmax(next_token_logits, dim=-1)
next_token_id = next_token.item()
if next_token_id == tokenizer.pad_token_id:
break
output_tokens.append(next_token_id)
decoder_input = torch.cat([decoder_input, next_token.unsqueeze(0)], dim=1)
return tokenizer.decode(output_tokens)
# Gradio Interface Setup
iface = gr.Interface(
fn=generate_clean_text,
inputs=gr.Textbox(label="Noisy Text"),
outputs=gr.Textbox(label="Cleaned Text"),
live=True
)
iface.launch(debug=True)