File size: 7,715 Bytes
b8930e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from torch.utils.data import Dataset
from transformers import PreTrainedModel, PretrainedConfig, Trainer, TrainingArguments
from datasets import load_dataset
import numpy as np

# =====================
# 1. Load Dataset Subsets
# =====================
dataset = load_dataset("bashyaldhiraj2067/500k_copy_error_dataset")
train_subset = dataset["train"].select(range(int(len(dataset["train"]) * 0.1)))
test_subset = dataset["test"].select(range(int(len(dataset["test"]) * 0.1)))
print(f"Subset train size: {len(train_subset)}")
print(f"Subset test size: {len(test_subset)}")

# =====================
# 2. Tokenizer
# =====================
special_tokens = ["<pad>", "<s>", "</s>", "<unk>"]
nepali_chars = list("अआइईउऊऋॠऌॡऎएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसह्ािीुूृॄेैोौंंःँ।०१२३४५६७८९,.;?!़ॅंःॊॅऒऽॉड़ॐ॥ऑऱफ़ढ़")
char_vocab = special_tokens + nepali_chars
char2id = {char: idx for idx, char in enumerate(char_vocab)}
id2char = {idx: char for char, idx in char2id.items()}
vocab_size = len(char2id)

class CharTokenizer:
    def __init__(self, char2id, id2char, vocab_size):
        self.char2id = char2id
        self.id2char = id2char
        self.pad_token_id = char2id["<pad>"]
        self.unk_token_id = char2id["<unk>"]
        self.bos_token_id = char2id["<s>"]
        self.eos_token_id = char2id["</s>"]
        self.vocab_size = vocab_size

    def encode(self, text, max_length=128):
        ids = [self.char2id.get(ch, self.unk_token_id) for ch in text]
        ids = ids[:max_length]
        return ids + [self.pad_token_id] * (max_length - len(ids))

    def decode(self, ids):
        return ''.join([self.id2char.get(i, '') for i in ids if i != self.pad_token_id])

    def __call__(self, text, text_target=None, max_length=128):
        input_ids = self.encode(text, max_length)
        input_ids = torch.clamp(torch.tensor(input_ids), max=self.vocab_size - 1).tolist()
        result = {"input_ids": input_ids, "attention_mask": [1 if i != self.pad_token_id else 0 for i in input_ids]}
        if text_target:
            labels = self.encode(text_target, max_length)
            result["labels"] = labels
        return result

tokenizer = CharTokenizer(char2id, id2char, vocab_size=vocab_size)

# =====================
# 3. Dataset
# =====================
class CopyDataset(Dataset):
    def __init__(self, data, tokenizer, max_length=128):
        self.data = data
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        noisy = self.data[idx]['incorrect']
        clean = self.data[idx]['correct']
        return self.tokenizer(noisy, text_target=clean, max_length=self.max_length)

train_dataset = CopyDataset(train_subset, tokenizer)
eval_dataset = CopyDataset(test_subset, tokenizer)

# =====================
# 4. Transformer with Copy Mechanism
# =====================
class TransformerCopyConfig(PretrainedConfig):
    def __init__(self, vocab_size=len(char2id), **kwargs):
        super().__init__(**kwargs)
        self.vocab_size = vocab_size

# --- Model Components ---
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=512):
        super().__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2) * (-torch.log(torch.tensor(10000.0)) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe.unsqueeze(0))

    def forward(self, x):
        return x + self.pe[:, :x.size(1)]

class TransformerCopyModel(nn.Module):
    def __init__(self, vocab_size, d_model=256, nhead=8, num_layers=4, dim_ff=512, dropout=0.1):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.positional_encoding = PositionalEncoding(d_model)

        encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_ff, dropout)
        decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_ff, dropout)

        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)
        self.decoder = nn.TransformerDecoder(decoder_layer, num_layers)

        self.copy_attention = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.copy_gate = nn.Linear(d_model * 2, 1)

        self.output_layer = nn.Linear(d_model, vocab_size)

    def forward(self, input_ids, attention_mask=None, labels=None):
        src = input_ids
        tgt = labels[:, :-1]
        tgt_y = labels[:, 1:]

        src_embed = self.embedding(src)
        tgt_embed = self.embedding(tgt)
        src_embed = self.positional_encoding(src_embed)
        tgt_embed = self.positional_encoding(tgt_embed)

        src_mask = (src == tokenizer.pad_token_id)
        tgt_mask = (tgt == tokenizer.pad_token_id)

        memory = self.encoder(src_embed.transpose(0, 1), src_key_padding_mask=src_mask)
        output = self.decoder(
            tgt_embed.transpose(0, 1),
            memory,
            tgt_key_padding_mask=tgt_mask,
            memory_key_padding_mask=src_mask
        )

        attn_output, attn_weights = self.copy_attention(output, memory, memory, key_padding_mask=src_mask)
        concat = torch.cat([output, attn_output], dim=-1)
        copy_prob = torch.sigmoid(self.copy_gate(concat))

        gen_logits = self.output_layer(output)
        gen_probs = F.softmax(gen_logits, dim=-1)

        loss = F.cross_entropy(
            gen_logits.transpose(0, 1).reshape(-1, gen_logits.size(-1)),
            tgt_y.reshape(-1),
            ignore_index=tokenizer.pad_token_id
        ) if labels is not None else None

        return {"loss": loss, "logits": gen_logits.transpose(0, 1)}

# --- HF Wrapper ---
class TransformerCopyHF(PreTrainedModel):
    config_class = TransformerCopyConfig
    def __init__(self, config):
        super().__init__(config)
        self.model = TransformerCopyModel(config.vocab_size)

    def forward(self, input_ids, attention_mask=None, labels=None):
        return self.model(input_ids, attention_mask, labels)

model = TransformerCopyHF.from_pretrained("bashyaldhiraj2067/remove1_copy_transformer")
model.eval()

# =====================
# 5. Inference Function
# =====================
def generate_clean_text(input_text, max_length=128):
    model_input = tokenizer.encode(input_text, max_length=max_length)
    input_ids = torch.tensor([model_input])
    # Create dummy target input (just start token)
    decoder_input = torch.tensor([[tokenizer.bos_token_id]])
    output_tokens = []
    for _ in range(max_length):
        with torch.no_grad():
            out = model(input_ids=input_ids, labels=torch.cat([decoder_input, torch.zeros((1, 1), dtype=torch.long)], dim=1))
            next_token_logits = out["logits"][:, -1, :]
            next_token = torch.argmax(next_token_logits, dim=-1)

        next_token_id = next_token.item()
       
        if next_token_id == tokenizer.pad_token_id:
            break
        output_tokens.append(next_token_id)
        decoder_input = torch.cat([decoder_input, next_token.unsqueeze(0)], dim=1)

    return tokenizer.decode(output_tokens)


# Gradio Interface Setup
iface = gr.Interface(
    fn=generate_clean_text,
    inputs=gr.Textbox(label="Noisy Text"),
    outputs=gr.Textbox(label="Cleaned Text"),
    live=True
)

iface.launch(debug=True)