Spaces:
Runtime error
Runtime error
File size: 7,715 Bytes
b8930e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from torch.utils.data import Dataset
from transformers import PreTrainedModel, PretrainedConfig, Trainer, TrainingArguments
from datasets import load_dataset
import numpy as np
# =====================
# 1. Load Dataset Subsets
# =====================
dataset = load_dataset("bashyaldhiraj2067/500k_copy_error_dataset")
train_subset = dataset["train"].select(range(int(len(dataset["train"]) * 0.1)))
test_subset = dataset["test"].select(range(int(len(dataset["test"]) * 0.1)))
print(f"Subset train size: {len(train_subset)}")
print(f"Subset test size: {len(test_subset)}")
# =====================
# 2. Tokenizer
# =====================
special_tokens = ["<pad>", "<s>", "</s>", "<unk>"]
nepali_chars = list("अआइईउऊऋॠऌॡऎएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसह्ािीुूृॄेैोौंंःँ।०१२३४५६७८९,.;?!़ॅंःॊॅऒऽॉड़ॐ॥ऑऱफ़ढ़")
char_vocab = special_tokens + nepali_chars
char2id = {char: idx for idx, char in enumerate(char_vocab)}
id2char = {idx: char for char, idx in char2id.items()}
vocab_size = len(char2id)
class CharTokenizer:
def __init__(self, char2id, id2char, vocab_size):
self.char2id = char2id
self.id2char = id2char
self.pad_token_id = char2id["<pad>"]
self.unk_token_id = char2id["<unk>"]
self.bos_token_id = char2id["<s>"]
self.eos_token_id = char2id["</s>"]
self.vocab_size = vocab_size
def encode(self, text, max_length=128):
ids = [self.char2id.get(ch, self.unk_token_id) for ch in text]
ids = ids[:max_length]
return ids + [self.pad_token_id] * (max_length - len(ids))
def decode(self, ids):
return ''.join([self.id2char.get(i, '') for i in ids if i != self.pad_token_id])
def __call__(self, text, text_target=None, max_length=128):
input_ids = self.encode(text, max_length)
input_ids = torch.clamp(torch.tensor(input_ids), max=self.vocab_size - 1).tolist()
result = {"input_ids": input_ids, "attention_mask": [1 if i != self.pad_token_id else 0 for i in input_ids]}
if text_target:
labels = self.encode(text_target, max_length)
result["labels"] = labels
return result
tokenizer = CharTokenizer(char2id, id2char, vocab_size=vocab_size)
# =====================
# 3. Dataset
# =====================
class CopyDataset(Dataset):
def __init__(self, data, tokenizer, max_length=128):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
noisy = self.data[idx]['incorrect']
clean = self.data[idx]['correct']
return self.tokenizer(noisy, text_target=clean, max_length=self.max_length)
train_dataset = CopyDataset(train_subset, tokenizer)
eval_dataset = CopyDataset(test_subset, tokenizer)
# =====================
# 4. Transformer with Copy Mechanism
# =====================
class TransformerCopyConfig(PretrainedConfig):
def __init__(self, vocab_size=len(char2id), **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
# --- Model Components ---
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=512):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-torch.log(torch.tensor(10000.0)) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
return x + self.pe[:, :x.size(1)]
class TransformerCopyModel(nn.Module):
def __init__(self, vocab_size, d_model=256, nhead=8, num_layers=4, dim_ff=512, dropout=0.1):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model)
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_ff, dropout)
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_ff, dropout)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers)
self.copy_attention = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.copy_gate = nn.Linear(d_model * 2, 1)
self.output_layer = nn.Linear(d_model, vocab_size)
def forward(self, input_ids, attention_mask=None, labels=None):
src = input_ids
tgt = labels[:, :-1]
tgt_y = labels[:, 1:]
src_embed = self.embedding(src)
tgt_embed = self.embedding(tgt)
src_embed = self.positional_encoding(src_embed)
tgt_embed = self.positional_encoding(tgt_embed)
src_mask = (src == tokenizer.pad_token_id)
tgt_mask = (tgt == tokenizer.pad_token_id)
memory = self.encoder(src_embed.transpose(0, 1), src_key_padding_mask=src_mask)
output = self.decoder(
tgt_embed.transpose(0, 1),
memory,
tgt_key_padding_mask=tgt_mask,
memory_key_padding_mask=src_mask
)
attn_output, attn_weights = self.copy_attention(output, memory, memory, key_padding_mask=src_mask)
concat = torch.cat([output, attn_output], dim=-1)
copy_prob = torch.sigmoid(self.copy_gate(concat))
gen_logits = self.output_layer(output)
gen_probs = F.softmax(gen_logits, dim=-1)
loss = F.cross_entropy(
gen_logits.transpose(0, 1).reshape(-1, gen_logits.size(-1)),
tgt_y.reshape(-1),
ignore_index=tokenizer.pad_token_id
) if labels is not None else None
return {"loss": loss, "logits": gen_logits.transpose(0, 1)}
# --- HF Wrapper ---
class TransformerCopyHF(PreTrainedModel):
config_class = TransformerCopyConfig
def __init__(self, config):
super().__init__(config)
self.model = TransformerCopyModel(config.vocab_size)
def forward(self, input_ids, attention_mask=None, labels=None):
return self.model(input_ids, attention_mask, labels)
model = TransformerCopyHF.from_pretrained("bashyaldhiraj2067/remove1_copy_transformer")
model.eval()
# =====================
# 5. Inference Function
# =====================
def generate_clean_text(input_text, max_length=128):
model_input = tokenizer.encode(input_text, max_length=max_length)
input_ids = torch.tensor([model_input])
# Create dummy target input (just start token)
decoder_input = torch.tensor([[tokenizer.bos_token_id]])
output_tokens = []
for _ in range(max_length):
with torch.no_grad():
out = model(input_ids=input_ids, labels=torch.cat([decoder_input, torch.zeros((1, 1), dtype=torch.long)], dim=1))
next_token_logits = out["logits"][:, -1, :]
next_token = torch.argmax(next_token_logits, dim=-1)
next_token_id = next_token.item()
if next_token_id == tokenizer.pad_token_id:
break
output_tokens.append(next_token_id)
decoder_input = torch.cat([decoder_input, next_token.unsqueeze(0)], dim=1)
return tokenizer.decode(output_tokens)
# Gradio Interface Setup
iface = gr.Interface(
fn=generate_clean_text,
inputs=gr.Textbox(label="Noisy Text"),
outputs=gr.Textbox(label="Cleaned Text"),
live=True
)
iface.launch(debug=True)
|