|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from scipy.integrate import odeint |
|
from scipy.optimize import fsolve |
|
import gradio as gr |
|
|
|
|
|
population_size = 100 |
|
time_points = np.linspace(0, 24, 100) |
|
|
|
|
|
pk_parameters = { |
|
'Enrofloxacin': { |
|
'Cmax_mean': 1.35, 'Cmax_std': 0.15, |
|
'Tmax_mean': 4.00, 'Tmax_std': 1, |
|
'Ke_mean': 0.03, 'Ke_std': 0.003, |
|
'F_mean': 0.7, 'F_std': 0.1, |
|
'Vd_mean': 24.76, 'Vd_std': 3.67, |
|
'pKa': 6.0, |
|
'type': 'acidic' |
|
}, |
|
'Ciprofloxacin': { |
|
'Cmax_mean': 0.08, 'Cmax_std': 0.01, |
|
'Tmax_mean': 3.44, 'Tmax_std': 1.01, |
|
'Ke_mean': 0.04, 'Ke_std': 0.01, |
|
'F_mean': 0.6, 'F_std': 0.1, |
|
'Vd_mean': 17.46, 'Vd_std': 6.40, |
|
'pKa': 7.7, |
|
'type': 'acidic' |
|
} |
|
} |
|
|
|
|
|
MIC_values = { |
|
'E.coli': 0.06, |
|
'S.Enteritidis': 0.1, |
|
'M.gallisepticum': 0.1, |
|
'C.perfringens': 0.12 |
|
} |
|
|
|
|
|
def unionized_fraction_acidic(pH, pKa): |
|
return 1 / (1 + 10 ** (pH - pKa)) |
|
|
|
def unionized_fraction_basic(pH, pKa): |
|
return 1 / (1 + 10 ** (pKa - pH)) |
|
|
|
def calculate_unionized_concentration(concentration, pH, pKa, drug_type): |
|
if drug_type == "acidic": |
|
unionized_fraction = unionized_fraction_acidic(pH, pKa) |
|
elif drug_type == "basic": |
|
unionized_fraction = unionized_fraction_basic(pH, pKa) |
|
else: |
|
raise ValueError("Invalid drug type. Must be 'acidic' or 'basic'.") |
|
return concentration * unionized_fraction |
|
|
|
|
|
def pk_model(C, t, ka, ke, Vd, F, dose): |
|
dCdt = (F * dose * ka / Vd) * np.exp(-ka * t) - (ke * C[0]) |
|
return dCdt |
|
|
|
def solve_for_ka(Tmax_target, ke): |
|
ka_guess = max(ke * 2, 0.01) |
|
def equation(ka): return (np.log(ka) - np.log(ke)) / (ka - ke) - Tmax_target |
|
ka_solution = fsolve(equation, ka_guess) |
|
return ka_solution[0] if ka_solution[0] > 0 else 0.05 |
|
|
|
def simulate_concentration(dose, ke, Vd, F, Cmax_target, drug_type, pH, pKa): |
|
ka = solve_for_ka(pk_parameters['Enrofloxacin']['Tmax_mean'], ke) |
|
concentration = odeint(pk_model, [0], time_points, args=(ka, ke, Vd, F, dose))[:, 0] |
|
if np.max(concentration) > 0: |
|
concentration *= (Cmax_target / np.max(concentration)) |
|
return calculate_unionized_concentration(concentration, pH, pKa, drug_type) |
|
|
|
def simulate_multiple_doses(pk_params, doses, pH): |
|
all_data = [] |
|
for molecule, params in pk_params.items(): |
|
for i in range(population_size): |
|
F = np.random.normal(params['F_mean'], params['F_std']) |
|
ke = np.random.normal(params['Ke_mean'], params['Ke_std']) |
|
Vd = np.random.normal(params['Vd_mean'], params['Vd_std']) |
|
Cmax_target = np.random.normal(params['Cmax_mean'], params['Cmax_std']) |
|
pKa = params['pKa'] |
|
ref_conc = simulate_concentration(10, ke, Vd, F, Cmax_target, params['type'], pH, pKa) |
|
for dose in doses: |
|
scaled_conc = ref_conc * (dose / 10) |
|
all_data.extend([{ |
|
'Individual': i + 1, |
|
'Molecule': molecule, |
|
'Dose': dose, |
|
'Time': t, |
|
'Concentration': conc |
|
} for t, conc in zip(time_points, scaled_conc)]) |
|
return pd.DataFrame(all_data) |
|
|
|
def calculate_pkpd_metrics(concentrations, time_points, MIC): |
|
AUC = np.trapz(concentrations, time_points) |
|
Cmax = np.max(concentrations) |
|
T_above_MIC = time_points[concentrations > MIC] |
|
T_above_MIC_duration = (T_above_MIC[-1] - T_above_MIC[0]) if len(T_above_MIC) > 0 else 0 |
|
AUIC = np.trapz(concentrations[concentrations > MIC] - MIC, time_points[concentrations > MIC]) if np.any(concentrations > MIC) else 0 |
|
return AUC, Cmax, T_above_MIC_duration, AUIC |
|
|
|
def plot_pkpd_and_ionization(pk_params, df, MIC, doses, pH_range): |
|
fig, axes = plt.subplots(len(pk_params), len(doses) + 1, figsize=(20, len(pk_params) * 5)) |
|
for row, (molecule, params) in enumerate(pk_params.items()): |
|
pKa = params['pKa'] |
|
for col, dose in enumerate(doses): |
|
group = df[(df['Molecule'] == molecule) & (df['Dose'] == dose)] |
|
mean_conc = group.groupby('Time')['Concentration'].mean().values |
|
ax = axes[row, col] |
|
ax.plot(time_points[:len(mean_conc)], mean_conc, label=f"{molecule}, Dose: {dose} mg/kg") |
|
ax.axhline(MIC, color='red', linestyle='--', label=f'MIC = {MIC:.2f}') |
|
|
|
|
|
AUC, Cmax, T_above_MIC, AUIC = calculate_pkpd_metrics(mean_conc, time_points[:len(mean_conc)], MIC) |
|
|
|
|
|
ax.fill_between(time_points[:len(mean_conc)], MIC, mean_conc, where=(mean_conc > MIC), color='green', alpha=0.3, label="AUIC") |
|
ax.text(0.6 * time_points[-1], 0.8 * np.max(mean_conc), |
|
f"AUC: {AUC:.2f}\nCmax: {Cmax:.2f}\nT>MIC: {T_above_MIC:.2f} h\nAUIC: {AUIC:.2f}", |
|
fontsize=9, bbox=dict(facecolor='white', alpha=0.8)) |
|
|
|
ax.set_title(f"{molecule} - Dose {dose} mg/kg") |
|
ax.set_xlabel('Time (h)') |
|
ax.set_ylabel('Concentration (mg/L)') |
|
ax.legend() |
|
ax = axes[row, -1] |
|
unionized = [unionized_fraction_acidic(pH, pKa) for pH in pH_range] |
|
ax.plot(pH_range, unionized, label=f"Ionization Profile ({molecule})") |
|
ax.set_title(f"Ionization Profile: {molecule}") |
|
ax.set_xlabel('pH') |
|
ax.set_ylabel('Unionized Fraction') |
|
ax.legend() |
|
plt.tight_layout() |
|
return fig |
|
|
|
|
|
def gradio_function(pH_input, pathogen, dose_input): |
|
if pathogen not in MIC_values: |
|
raise ValueError("Invalid pathogen.") |
|
MIC = MIC_values[pathogen] |
|
doses = [int(d) for d in dose_input.split(',')] |
|
pH_range = np.linspace(0, 14, 100) |
|
df = simulate_multiple_doses(pk_parameters, doses, pH_input) |
|
fig = plot_pkpd_and_ionization(pk_parameters, df, MIC, doses, pH_range) |
|
return fig |
|
|
|
|
|
|
|
interface = gr.Interface( |
|
fn=gradio_function, |
|
inputs=[ |
|
gr.Slider(0, 14, step=0.1, label="Water pH Value"), |
|
gr.Dropdown(list(MIC_values.keys()), label="Pathogen"), |
|
gr.Textbox(value="5,15,20", label="Doses (mg/kg, comma-separated)") |
|
], |
|
outputs=gr.Plot(), |
|
title="Qomics All Rights Reserved (C)", |
|
live=True |
|
) |
|
|
|
|
|
interface.launch() |