SmartSim / app.py
aminemos's picture
initial commit
6150a83 verified
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import fsolve
import gradio as gr
# Population and time settings
population_size = 100
time_points = np.linspace(0, 24, 100)
# PK parameters for Enrofloxacin and Ciprofloxacin
pk_parameters = {
'Enrofloxacin': {
'Cmax_mean': 1.35, 'Cmax_std': 0.15,
'Tmax_mean': 4.00, 'Tmax_std': 1,
'Ke_mean': 0.03, 'Ke_std': 0.003,
'F_mean': 0.7, 'F_std': 0.1,
'Vd_mean': 24.76, 'Vd_std': 3.67,
'pKa': 6.0,
'type': 'acidic'
},
'Ciprofloxacin': {
'Cmax_mean': 0.08, 'Cmax_std': 0.01,
'Tmax_mean': 3.44, 'Tmax_std': 1.01,
'Ke_mean': 0.04, 'Ke_std': 0.01,
'F_mean': 0.6, 'F_std': 0.1,
'Vd_mean': 17.46, 'Vd_std': 6.40,
'pKa': 7.7,
'type': 'acidic'
}
}
# MIC values for pathogens
MIC_values = {
'E.coli': 0.06,
'S.Enteritidis': 0.1,
'M.gallisepticum': 0.1,
'C.perfringens': 0.12
}
# Ionization calculations
def unionized_fraction_acidic(pH, pKa):
return 1 / (1 + 10 ** (pH - pKa))
def unionized_fraction_basic(pH, pKa):
return 1 / (1 + 10 ** (pKa - pH))
def calculate_unionized_concentration(concentration, pH, pKa, drug_type):
if drug_type == "acidic":
unionized_fraction = unionized_fraction_acidic(pH, pKa)
elif drug_type == "basic":
unionized_fraction = unionized_fraction_basic(pH, pKa)
else:
raise ValueError("Invalid drug type. Must be 'acidic' or 'basic'.")
return concentration * unionized_fraction
# Simulate drug concentration
def pk_model(C, t, ka, ke, Vd, F, dose):
dCdt = (F * dose * ka / Vd) * np.exp(-ka * t) - (ke * C[0])
return dCdt
def solve_for_ka(Tmax_target, ke):
ka_guess = max(ke * 2, 0.01)
def equation(ka): return (np.log(ka) - np.log(ke)) / (ka - ke) - Tmax_target
ka_solution = fsolve(equation, ka_guess)
return ka_solution[0] if ka_solution[0] > 0 else 0.05
def simulate_concentration(dose, ke, Vd, F, Cmax_target, drug_type, pH, pKa):
ka = solve_for_ka(pk_parameters['Enrofloxacin']['Tmax_mean'], ke)
concentration = odeint(pk_model, [0], time_points, args=(ka, ke, Vd, F, dose))[:, 0]
if np.max(concentration) > 0:
concentration *= (Cmax_target / np.max(concentration))
return calculate_unionized_concentration(concentration, pH, pKa, drug_type)
def simulate_multiple_doses(pk_params, doses, pH):
all_data = []
for molecule, params in pk_params.items():
for i in range(population_size):
F = np.random.normal(params['F_mean'], params['F_std'])
ke = np.random.normal(params['Ke_mean'], params['Ke_std'])
Vd = np.random.normal(params['Vd_mean'], params['Vd_std'])
Cmax_target = np.random.normal(params['Cmax_mean'], params['Cmax_std'])
pKa = params['pKa']
ref_conc = simulate_concentration(10, ke, Vd, F, Cmax_target, params['type'], pH, pKa)
for dose in doses:
scaled_conc = ref_conc * (dose / 10)
all_data.extend([{
'Individual': i + 1,
'Molecule': molecule,
'Dose': dose,
'Time': t,
'Concentration': conc
} for t, conc in zip(time_points, scaled_conc)])
return pd.DataFrame(all_data)
def calculate_pkpd_metrics(concentrations, time_points, MIC):
AUC = np.trapz(concentrations, time_points)
Cmax = np.max(concentrations)
T_above_MIC = time_points[concentrations > MIC]
T_above_MIC_duration = (T_above_MIC[-1] - T_above_MIC[0]) if len(T_above_MIC) > 0 else 0
AUIC = np.trapz(concentrations[concentrations > MIC] - MIC, time_points[concentrations > MIC]) if np.any(concentrations > MIC) else 0
return AUC, Cmax, T_above_MIC_duration, AUIC
def plot_pkpd_and_ionization(pk_params, df, MIC, doses, pH_range):
fig, axes = plt.subplots(len(pk_params), len(doses) + 1, figsize=(20, len(pk_params) * 5))
for row, (molecule, params) in enumerate(pk_params.items()):
pKa = params['pKa']
for col, dose in enumerate(doses):
group = df[(df['Molecule'] == molecule) & (df['Dose'] == dose)]
mean_conc = group.groupby('Time')['Concentration'].mean().values
ax = axes[row, col]
ax.plot(time_points[:len(mean_conc)], mean_conc, label=f"{molecule}, Dose: {dose} mg/kg")
ax.axhline(MIC, color='red', linestyle='--', label=f'MIC = {MIC:.2f}')
# Calculate PKPD metrics
AUC, Cmax, T_above_MIC, AUIC = calculate_pkpd_metrics(mean_conc, time_points[:len(mean_conc)], MIC)
# Fill AUIC area
ax.fill_between(time_points[:len(mean_conc)], MIC, mean_conc, where=(mean_conc > MIC), color='green', alpha=0.3, label="AUIC")
ax.text(0.6 * time_points[-1], 0.8 * np.max(mean_conc),
f"AUC: {AUC:.2f}\nCmax: {Cmax:.2f}\nT>MIC: {T_above_MIC:.2f} h\nAUIC: {AUIC:.2f}",
fontsize=9, bbox=dict(facecolor='white', alpha=0.8))
ax.set_title(f"{molecule} - Dose {dose} mg/kg")
ax.set_xlabel('Time (h)')
ax.set_ylabel('Concentration (mg/L)')
ax.legend()
ax = axes[row, -1]
unionized = [unionized_fraction_acidic(pH, pKa) for pH in pH_range]
ax.plot(pH_range, unionized, label=f"Ionization Profile ({molecule})")
ax.set_title(f"Ionization Profile: {molecule}")
ax.set_xlabel('pH')
ax.set_ylabel('Unionized Fraction')
ax.legend()
plt.tight_layout()
return fig
# Gradio Function
def gradio_function(pH_input, pathogen, dose_input):
if pathogen not in MIC_values:
raise ValueError("Invalid pathogen.")
MIC = MIC_values[pathogen]
doses = [int(d) for d in dose_input.split(',')]
pH_range = np.linspace(0, 14, 100)
df = simulate_multiple_doses(pk_parameters, doses, pH_input)
fig = plot_pkpd_and_ionization(pk_parameters, df, MIC, doses, pH_range)
return fig
# Gradio Interface
interface = gr.Interface(
fn=gradio_function,
inputs=[
gr.Slider(0, 14, step=0.1, label="Water pH Value"),
gr.Dropdown(list(MIC_values.keys()), label="Pathogen"),
gr.Textbox(value="5,15,20", label="Doses (mg/kg, comma-separated)")
],
outputs=gr.Plot(),
title="Qomics All Rights Reserved (C)",
live=True
)
interface.launch()