File size: 6,499 Bytes
6150a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import fsolve
import gradio as gr
# Population and time settings
population_size = 100
time_points = np.linspace(0, 24, 100)
# PK parameters for Enrofloxacin and Ciprofloxacin
pk_parameters = {
'Enrofloxacin': {
'Cmax_mean': 1.35, 'Cmax_std': 0.15,
'Tmax_mean': 4.00, 'Tmax_std': 1,
'Ke_mean': 0.03, 'Ke_std': 0.003,
'F_mean': 0.7, 'F_std': 0.1,
'Vd_mean': 24.76, 'Vd_std': 3.67,
'pKa': 6.0,
'type': 'acidic'
},
'Ciprofloxacin': {
'Cmax_mean': 0.08, 'Cmax_std': 0.01,
'Tmax_mean': 3.44, 'Tmax_std': 1.01,
'Ke_mean': 0.04, 'Ke_std': 0.01,
'F_mean': 0.6, 'F_std': 0.1,
'Vd_mean': 17.46, 'Vd_std': 6.40,
'pKa': 7.7,
'type': 'acidic'
}
}
# MIC values for pathogens
MIC_values = {
'E.coli': 0.06,
'S.Enteritidis': 0.1,
'M.gallisepticum': 0.1,
'C.perfringens': 0.12
}
# Ionization calculations
def unionized_fraction_acidic(pH, pKa):
return 1 / (1 + 10 ** (pH - pKa))
def unionized_fraction_basic(pH, pKa):
return 1 / (1 + 10 ** (pKa - pH))
def calculate_unionized_concentration(concentration, pH, pKa, drug_type):
if drug_type == "acidic":
unionized_fraction = unionized_fraction_acidic(pH, pKa)
elif drug_type == "basic":
unionized_fraction = unionized_fraction_basic(pH, pKa)
else:
raise ValueError("Invalid drug type. Must be 'acidic' or 'basic'.")
return concentration * unionized_fraction
# Simulate drug concentration
def pk_model(C, t, ka, ke, Vd, F, dose):
dCdt = (F * dose * ka / Vd) * np.exp(-ka * t) - (ke * C[0])
return dCdt
def solve_for_ka(Tmax_target, ke):
ka_guess = max(ke * 2, 0.01)
def equation(ka): return (np.log(ka) - np.log(ke)) / (ka - ke) - Tmax_target
ka_solution = fsolve(equation, ka_guess)
return ka_solution[0] if ka_solution[0] > 0 else 0.05
def simulate_concentration(dose, ke, Vd, F, Cmax_target, drug_type, pH, pKa):
ka = solve_for_ka(pk_parameters['Enrofloxacin']['Tmax_mean'], ke)
concentration = odeint(pk_model, [0], time_points, args=(ka, ke, Vd, F, dose))[:, 0]
if np.max(concentration) > 0:
concentration *= (Cmax_target / np.max(concentration))
return calculate_unionized_concentration(concentration, pH, pKa, drug_type)
def simulate_multiple_doses(pk_params, doses, pH):
all_data = []
for molecule, params in pk_params.items():
for i in range(population_size):
F = np.random.normal(params['F_mean'], params['F_std'])
ke = np.random.normal(params['Ke_mean'], params['Ke_std'])
Vd = np.random.normal(params['Vd_mean'], params['Vd_std'])
Cmax_target = np.random.normal(params['Cmax_mean'], params['Cmax_std'])
pKa = params['pKa']
ref_conc = simulate_concentration(10, ke, Vd, F, Cmax_target, params['type'], pH, pKa)
for dose in doses:
scaled_conc = ref_conc * (dose / 10)
all_data.extend([{
'Individual': i + 1,
'Molecule': molecule,
'Dose': dose,
'Time': t,
'Concentration': conc
} for t, conc in zip(time_points, scaled_conc)])
return pd.DataFrame(all_data)
def calculate_pkpd_metrics(concentrations, time_points, MIC):
AUC = np.trapz(concentrations, time_points)
Cmax = np.max(concentrations)
T_above_MIC = time_points[concentrations > MIC]
T_above_MIC_duration = (T_above_MIC[-1] - T_above_MIC[0]) if len(T_above_MIC) > 0 else 0
AUIC = np.trapz(concentrations[concentrations > MIC] - MIC, time_points[concentrations > MIC]) if np.any(concentrations > MIC) else 0
return AUC, Cmax, T_above_MIC_duration, AUIC
def plot_pkpd_and_ionization(pk_params, df, MIC, doses, pH_range):
fig, axes = plt.subplots(len(pk_params), len(doses) + 1, figsize=(20, len(pk_params) * 5))
for row, (molecule, params) in enumerate(pk_params.items()):
pKa = params['pKa']
for col, dose in enumerate(doses):
group = df[(df['Molecule'] == molecule) & (df['Dose'] == dose)]
mean_conc = group.groupby('Time')['Concentration'].mean().values
ax = axes[row, col]
ax.plot(time_points[:len(mean_conc)], mean_conc, label=f"{molecule}, Dose: {dose} mg/kg")
ax.axhline(MIC, color='red', linestyle='--', label=f'MIC = {MIC:.2f}')
# Calculate PKPD metrics
AUC, Cmax, T_above_MIC, AUIC = calculate_pkpd_metrics(mean_conc, time_points[:len(mean_conc)], MIC)
# Fill AUIC area
ax.fill_between(time_points[:len(mean_conc)], MIC, mean_conc, where=(mean_conc > MIC), color='green', alpha=0.3, label="AUIC")
ax.text(0.6 * time_points[-1], 0.8 * np.max(mean_conc),
f"AUC: {AUC:.2f}\nCmax: {Cmax:.2f}\nT>MIC: {T_above_MIC:.2f} h\nAUIC: {AUIC:.2f}",
fontsize=9, bbox=dict(facecolor='white', alpha=0.8))
ax.set_title(f"{molecule} - Dose {dose} mg/kg")
ax.set_xlabel('Time (h)')
ax.set_ylabel('Concentration (mg/L)')
ax.legend()
ax = axes[row, -1]
unionized = [unionized_fraction_acidic(pH, pKa) for pH in pH_range]
ax.plot(pH_range, unionized, label=f"Ionization Profile ({molecule})")
ax.set_title(f"Ionization Profile: {molecule}")
ax.set_xlabel('pH')
ax.set_ylabel('Unionized Fraction')
ax.legend()
plt.tight_layout()
return fig
# Gradio Function
def gradio_function(pH_input, pathogen, dose_input):
if pathogen not in MIC_values:
raise ValueError("Invalid pathogen.")
MIC = MIC_values[pathogen]
doses = [int(d) for d in dose_input.split(',')]
pH_range = np.linspace(0, 14, 100)
df = simulate_multiple_doses(pk_parameters, doses, pH_input)
fig = plot_pkpd_and_ionization(pk_parameters, df, MIC, doses, pH_range)
return fig
# Gradio Interface
interface = gr.Interface(
fn=gradio_function,
inputs=[
gr.Slider(0, 14, step=0.1, label="Water pH Value"),
gr.Dropdown(list(MIC_values.keys()), label="Pathogen"),
gr.Textbox(value="5,15,20", label="Doses (mg/kg, comma-separated)")
],
outputs=gr.Plot(),
title="Qomics All Rights Reserved (C)",
live=True
)
interface.launch() |