Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import spaces | |
import psycopg2 | |
import gradio as gr | |
from threading import Thread | |
from collections.abc import Iterator | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gc | |
# Constants | |
MAX_MAX_NEW_TOKENS = 4096 | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
DEFAULT_MAX_NEW_TOKENS = 2048 | |
HF_TOKEN = os.environ.get("HF_TOKEN", "") | |
# Language lists | |
INDIC_LANGUAGES = [ | |
"Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati", | |
"Kannada", "Odia", "Malayalam", "Punjabi", "Assamese", "Maithili", | |
"Santali", "Kashmiri", "Nepali", "Sindhi", "Konkani", "Dogri", | |
"Manipuri", "Bodo", "English", "Sanskrit" | |
] | |
SARVAM_LANGUAGES = INDIC_LANGUAGES | |
# Model configurations with optimizations | |
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
DEVICE_MAP = "cuda:0" if torch.cuda.is_available() else "cpu" | |
indictrans_model = AutoModelForCausalLM.from_pretrained( | |
"ai4bharat/IndicTrans3-beta", | |
torch_dtype=TORCH_DTYPE, | |
device_map=DEVICE_MAP, | |
token=HF_TOKEN, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
) | |
sarvam_model = AutoModelForCausalLM.from_pretrained( | |
"sarvamai/sarvam-translate", | |
torch_dtype=TORCH_DTYPE, | |
device_map=DEVICE_MAP, | |
token=HF_TOKEN, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
"ai4bharat/IndicTrans3-beta", | |
trust_remote_code=True | |
) | |
def format_message_for_translation(message, target_lang): | |
return f"Translate the following text to {target_lang}: {message}" | |
def store_feedback(rating, feedback_text, chat_history, tgt_lang, model_type): | |
try: | |
if not rating: | |
gr.Warning("Please select a rating before submitting feedback.", duration=5) | |
return None | |
if not feedback_text or feedback_text.strip() == "": | |
gr.Warning("Please provide some feedback before submitting.", duration=5) | |
return None | |
if not chat_history: | |
gr.Warning("Please provide the input text before submitting feedback.", duration=5) | |
return None | |
if len(chat_history[0]) < 2: | |
gr.Warning("Please translate the input text before submitting feedback.", duration=5) | |
return None | |
conn = psycopg2.connect( | |
host=os.getenv("DB_HOST"), | |
database=os.getenv("DB_NAME"), | |
user=os.getenv("DB_USER"), | |
password=os.getenv("DB_PASSWORD"), | |
port=os.getenv("DB_PORT"), | |
) | |
cursor = conn.cursor() | |
insert_query = """ | |
INSERT INTO feedback | |
(tgt_lang, rating, feedback_txt, chat_history, model_type) | |
VALUES (%s, %s, %s, %s, %s) | |
""" | |
cursor.execute(insert_query, (tgt_lang, int(rating), feedback_text, chat_history, model_type)) | |
conn.commit() | |
cursor.close() | |
conn.close() | |
gr.Info("Thank you for your feedback! ๐", duration=5) | |
except Exception as e: | |
print(f"Database error: {e}") | |
gr.Error("An error occurred while storing feedback. Please try again later.", duration=5) | |
def store_output(tgt_lang, input_text, output_text, model_type): | |
try: | |
conn = psycopg2.connect( | |
host=os.getenv("DB_HOST"), | |
database=os.getenv("DB_NAME"), | |
user=os.getenv("DB_USER"), | |
password=os.getenv("DB_PASSWORD"), | |
port=os.getenv("DB_PORT"), | |
) | |
cursor = conn.cursor() | |
insert_query = """ | |
INSERT INTO translation | |
(input_txt, output_txt, tgt_lang, model_type) | |
VALUES (%s, %s, %s, %s) | |
""" | |
cursor.execute(insert_query, (input_text, output_text, tgt_lang, model_type)) | |
conn.commit() | |
cursor.close() | |
conn.close() | |
except Exception as e: | |
print(f"Database error: {e}") | |
def translate_message( | |
message: str, | |
chat_history: list[dict], | |
target_language: str = "Hindi", | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
model_type: str = "indictrans" | |
) -> Iterator[str]: | |
if model_type == "indictrans": | |
model = indictrans_model | |
elif model_type == "sarvam": | |
model = sarvam_model | |
if model is None or tokenizer is None: | |
yield "Error: Model failed to load. Please try again." | |
return | |
conversation = [] | |
translation_request = format_message_for_translation(message, target_language) | |
conversation.append({"role": "user", "content": translation_request}) | |
try: | |
input_ids = tokenizer.apply_chat_template( | |
conversation, return_tensors="pt", add_generation_prompt=True | |
) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
"use_cache": True, # Enable KV cache | |
} | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Clean up | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
store_output(target_language, message, "".join(outputs), model_type) | |
except Exception as e: | |
yield f"Translation error: {str(e)}" | |
# Enhanced CSS with beautiful styling | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap'); | |
* { | |
font-family: 'Inter', sans-serif; | |
box-sizing: border-box; | |
} | |
.gradio-container { | |
background: #1a1a1a !important; | |
color: #e0e0e0; | |
min-height: 100vh; | |
} | |
.main-container { | |
background: #2a2a2a; | |
border-radius: 12px; | |
padding: 1.5rem; | |
margin: 1rem; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3); | |
} | |
.title-container { | |
text-align: center; | |
margin-bottom: 1.5rem; | |
padding: 1rem; | |
color: #a0a0ff; | |
} | |
.model-tab { | |
background: #3333a0; | |
border: none; | |
border-radius: 8px; | |
color: #ffffff; | |
font-weight: 500; | |
padding: 0.75rem 1.5rem; | |
transition: all 0.2s ease; | |
} | |
.model-tab:hover { | |
background: #4444b0; | |
transform: translateY(-1px); | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.4); | |
} | |
.language-dropdown { | |
background: #333333; | |
border: 1px solid #444444; | |
border-radius: 8px; | |
padding: 0.5rem; | |
font-size: 14px; | |
color: #e0e0e0; | |
transition: all 0.2s ease; | |
} | |
.language-dropdown:focus { | |
border-color: #6666ff; | |
box-shadow: 0 0 0 2px rgba(102, 102, 255, 0.2); | |
} | |
.chat-container { | |
background: #222222; | |
border-radius: 8px; | |
padding: 1rem; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3); | |
margin: 1rem 0; | |
} | |
.message-input { | |
background: #333333; | |
border: 1px solid #444444; | |
border-radius: 8px; | |
padding: 0.75rem; | |
font-size: 14px; | |
color: #e0e0e0; | |
transition: all 0.2s ease; | |
} | |
.message-input:focus { | |
border-color: #6666ff; | |
box-shadow: 0 0 0 2px rgba(102, 102, 255, 0.2); | |
} | |
.translate-btn { | |
background: #3333a0; | |
border: none; | |
border-radius: 8px; | |
color: #ffffff; | |
font-weight: 500; | |
padding: 0.75rem 1.5rem; | |
font-size: 14px; | |
cursor: pointer; | |
transition: all 0.2s ease; | |
} | |
.translate-btn:hover { | |
background: #4444b0; | |
transform: translateY(-1px); | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.4); | |
} | |
.examples-container { | |
background: #2a2a2a; | |
border-radius: 8px; | |
padding: 1rem; | |
margin: 1rem 0; | |
} | |
.feedback-section { | |
background: #2a2a2a; | |
border-radius: 8px; | |
padding: 1rem; | |
margin: 1rem 0; | |
border: none; | |
} | |
.advanced-options { | |
background: #2a2a2a; | |
border-radius: 8px; | |
padding: 1rem; | |
margin: 1rem 0; | |
} | |
.slider-container .gr-slider { | |
background: #444444; | |
color: #e0e0e0; | |
} | |
.rating-container { | |
display: flex; | |
gap: 0.5rem; | |
justify-content: center; | |
margin: 0.5rem 0; | |
} | |
.feedback-btn { | |
background: #3333a0; | |
border: none; | |
border-radius: 8px; | |
color: #ffffff; | |
font-weight: 500; | |
padding: 0.5rem 1rem; | |
cursor: pointer; | |
transition: all 0.2s ease; | |
} | |
.feedback-btn:hover { | |
background: #4444b0; | |
transform: translateY(-1px); | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.4); | |
} | |
.stats-card { | |
background: #333333; | |
border-radius: 8px; | |
padding: 0.75rem; | |
text-align: center; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3); | |
margin: 0.5rem; | |
color: #e0e0e0; | |
} | |
.model-info { | |
background: #3333a0; | |
color: #ffffff; | |
border-radius: 8px; | |
padding: 1rem; | |
margin: 1rem 0; | |
} | |
.animate-pulse { | |
animation: pulse 2s cubic-bezier(0.4, 0, 0.6, 1) infinite; | |
} | |
@keyframes pulse { | |
0%, 100% { | |
opacity: 1; | |
} | |
50% { | |
opacity: 0.5; | |
} | |
} | |
.loading-spinner { | |
border: 3px solid #444444; | |
border-top: 3px solid #6666ff; | |
border-radius: 50%; | |
width: 30px; | |
height: 30px; | |
animation: spin 1.5s linear infinite; | |
margin: 0 auto; | |
} | |
@keyframes spin { | |
0% { transform: rotate(0deg); } | |
100% { transform: rotate(360deg); } | |
} | |
""" | |
# Model descriptions | |
INDICTRANS_DESCRIPTION = """ | |
<div class="model-info"> | |
<h3>๐ IndicTrans3-Beta</h3> | |
<p><strong>Latest SOTA translation model from AI4Bharat</strong></p> | |
<ul> | |
<li>โ Supports <strong>22 Indic languages</strong></li> | |
<li>โ Document-level machine translation</li> | |
<li>โ Optimized for real-world applications</li> | |
<li>โ Enhanced with KV caching for faster inference</li> | |
</ul> | |
</div> | |
""" | |
SARVAM_DESCRIPTION = """ | |
<div class="model-info"> | |
<h3>๐ Sarvam Translate</h3> | |
<p><strong>Advanced multilingual translation model</strong></p> | |
<ul> | |
<li>โ Supports <strong>22 Indic languages</strong></li> | |
<li>โ High-quality translations</li> | |
<li>โ Document-level machine translation</li> | |
<li>โ Optimized for real-world applications</li> | |
<li>โ Optimized for production use</li> | |
<li>โ Enhanced with KV caching for faster inference</li> | |
</ul> | |
</div> | |
""" | |
def create_chatbot_interface(model_type, languages, description): | |
with gr.Column(elem_classes="main-container"): | |
gr.Markdown(description) | |
target_language = gr.Dropdown( | |
languages, | |
value=languages[0], | |
label="๐ Select Target Language", | |
elem_classes="language-dropdown", | |
) | |
chatbot = gr.Chatbot( | |
height=500, | |
elem_classes="chat-container", | |
show_copy_button=True, | |
avatar_images=["avatars/user_logo.png", "avatars/ai4bharat_logo.png"], | |
bubble_full_width=False, | |
show_label=False | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
placeholder="โ๏ธ Enter text to translate...", | |
show_label=False, | |
container=False, | |
scale=9, | |
elem_classes="message-input", | |
) | |
submit_btn = gr.Button( | |
"๐ Translate", | |
scale=1, | |
elem_classes="translate-btn" | |
) | |
# Examples section | |
if model_type == "indictrans": | |
examples_data = [ | |
"The Taj Mahal, an architectural marvel of white marble, stands majestically along the banks of the Yamuna River in Agra, India.", | |
"Kumbh Mela, the world's largest spiritual gathering, is a significant Hindu festival held at four sacred riverbanks.", | |
"India's classical dance forms, such as Bharatanatyam, Kathak, Odissi, are deeply rooted in tradition and storytelling.", | |
"Ayurveda, India's ancient medical system, emphasizes a holistic approach to health by balancing mind, body, and spirit.", | |
"Diwali, the festival of lights, symbolizes the victory of light over darkness and good over evil." | |
] | |
else: | |
examples_data = [ | |
"Hello, how are you today?", | |
"I love learning new languages and cultures.", | |
"Technology is transforming the way we communicate.", | |
"The weather is beautiful today.", | |
"Thank you for your help and support." | |
] | |
with gr.Accordion("๐ Example Texts", open=False, elem_classes="examples-container"): | |
gr.Examples( | |
examples=examples_data, | |
inputs=msg, | |
label="Click on any example to try:" | |
) | |
# Feedback section | |
with gr.Accordion("๐ญ Provide Feedback", open=False, elem_classes="feedback-section"): | |
gr.Markdown("### ๐ Rate Translation & Share Feedback") | |
gr.Markdown("Help us improve translation quality with your valuable feedback!") | |
with gr.Row(): | |
rating = gr.Radio( | |
["1", "2", "3", "4", "5"], | |
label="๐ Translation Quality Rating", | |
value=None | |
) | |
feedback_text = gr.Textbox( | |
placeholder="๐ฌ Share your thoughts about the translation quality, accuracy, or suggestions for improvement...", | |
label="๐ Your Feedback", | |
lines=3, | |
) | |
feedback_submit = gr.Button( | |
"๐ค Submit Feedback", | |
elem_classes="feedback-btn" | |
) | |
# Advanced options | |
with gr.Accordion("โ๏ธ Advanced Settings", open=False, elem_classes="advanced-options"): | |
gr.Markdown("### ๐ง Fine-tune Translation Parameters") | |
with gr.Row(): | |
max_new_tokens = gr.Slider( | |
label="๐ Max New Tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
elem_classes="slider-container" | |
) | |
temperature = gr.Slider( | |
label="๐ก๏ธ Temperature", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.1, | |
elem_classes="slider-container" | |
) | |
with gr.Row(): | |
top_p = gr.Slider( | |
label="๐ฏ Top-p (Nucleus Sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=0.9, | |
elem_classes="slider-container" | |
) | |
top_k = gr.Slider( | |
label="๐ Top-k", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
elem_classes="slider-container" | |
) | |
repetition_penalty = gr.Slider( | |
label="๐ Repetition Penalty", | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
value=1.0, | |
elem_classes="slider-container" | |
) | |
return (chatbot, msg, submit_btn, target_language, rating, feedback_text, | |
feedback_submit, max_new_tokens, temperature, top_p, top_k, repetition_penalty) | |
def user(user_message, history, target_lang): | |
return "", history + [[user_message, None]] | |
def bot(history, target_lang, max_tokens, temp, top_p_val, top_k_val, rep_penalty, model_type): | |
user_message = history[-1][0] | |
history[-1][1] = "" | |
for chunk in translate_message( | |
user_message, history[:-1], target_lang, max_tokens, | |
temp, top_p_val, top_k_val, rep_penalty, model_type | |
): | |
history[-1][1] = chunk | |
yield history | |
# Main Gradio interface | |
with gr.Blocks(css=css, title="๐ Advanced Multilingual Translation Hub", theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
""" | |
<div class="title-container"> | |
<h1>๐ Advanced Multilingual Translation Hub</h1> | |
<p style="font-size: 18px; margin-top: 10px;"> | |
Experience state-of-the-art translation with multiple AI models | |
</p> | |
</div> | |
""", | |
elem_classes="title-container" | |
) | |
# Statistics cards | |
with gr.Row(): | |
gr.Markdown( | |
'<div class="stats-card"><h3>๐ฏ</h3><p><strong>22+</strong><br>Languages</p></div>', | |
elem_classes="stats-card" | |
) | |
gr.Markdown( | |
'<div class="stats-card"><h3>๐</h3><p><strong>2</strong><br>AI Models</p></div>', | |
elem_classes="stats-card" | |
) | |
gr.Markdown( | |
'<div class="stats-card"><h3>โก</h3><p><strong>Optimized</strong><br>Performance</p></div>', | |
elem_classes="stats-card" | |
) | |
gr.Markdown( | |
'<div class="stats-card"><h3>๐</h3><p><strong>Secure</strong><br>Processing</p></div>', | |
elem_classes="stats-card" | |
) | |
with gr.Tabs(elem_classes="model-tab") as tabs: | |
with gr.TabItem("๐ฎ๐ณ IndicTrans3-Beta", elem_id="indictrans-tab"): | |
indictrans_components = create_chatbot_interface("indictrans", INDIC_LANGUAGES, INDICTRANS_DESCRIPTION) | |
with gr.TabItem("๐ Sarvam Translate", elem_id="sarvam-tab"): | |
sarvam_components = create_chatbot_interface("sarvam", SARVAM_LANGUAGES, SARVAM_DESCRIPTION) | |
# Event handlers for IndicTrans | |
(indictrans_chatbot, indictrans_msg, indictrans_submit, indictrans_lang, | |
indictrans_rating, indictrans_feedback, indictrans_feedback_submit, | |
indictrans_max_tokens, indictrans_temp, indictrans_top_p, | |
indictrans_top_k, indictrans_rep_penalty) = indictrans_components | |
indictrans_msg.submit( | |
user, [indictrans_msg, indictrans_chatbot, indictrans_lang], | |
[indictrans_msg, indictrans_chatbot], queue=False | |
).then( | |
lambda *args: bot(*args, "indictrans"), | |
[indictrans_chatbot, indictrans_lang, indictrans_max_tokens, | |
indictrans_temp, indictrans_top_p, indictrans_top_k, indictrans_rep_penalty], | |
indictrans_chatbot, | |
) | |
indictrans_submit.click( | |
user, [indictrans_msg, indictrans_chatbot, indictrans_lang], | |
[indictrans_msg, indictrans_chatbot], queue=False | |
).then( | |
lambda *args: bot(*args, "indictrans"), | |
[indictrans_chatbot, indictrans_lang, indictrans_max_tokens, | |
indictrans_temp, indictrans_top_p, indictrans_top_k, indictrans_rep_penalty], | |
indictrans_chatbot, | |
) | |
indictrans_feedback_submit.click( | |
lambda *args: store_feedback(*args, "indictrans"), | |
inputs=[indictrans_rating, indictrans_feedback, indictrans_chatbot, indictrans_lang], | |
) | |
# Event handlers for Sarvam | |
(sarvam_chatbot, sarvam_msg, sarvam_submit, sarvam_lang, | |
sarvam_rating, sarvam_feedback, sarvam_feedback_submit, | |
sarvam_max_tokens, sarvam_temp, sarvam_top_p, | |
sarvam_top_k, sarvam_rep_penalty) = sarvam_components | |
sarvam_msg.submit( | |
user, [sarvam_msg, sarvam_chatbot, sarvam_lang], | |
[sarvam_msg, sarvam_chatbot], queue=False | |
).then( | |
lambda *args: bot(*args, "sarvam"), | |
[sarvam_chatbot, sarvam_lang, sarvam_max_tokens, | |
sarvam_temp, sarvam_top_p, sarvam_top_k, sarvam_rep_penalty], | |
sarvam_chatbot, | |
) | |
sarvam_submit.click( | |
user, [sarvam_msg, sarvam_chatbot, sarvam_lang], | |
[sarvam_msg, sarvam_chatbot], queue=False | |
).then( | |
lambda *args: bot(*args, "sarvam"), | |
[sarvam_chatbot, sarvam_lang, sarvam_max_tokens, | |
sarvam_temp, sarvam_top_p, sarvam_top_k, sarvam_rep_penalty], | |
sarvam_chatbot, | |
) | |
sarvam_feedback_submit.click( | |
lambda *args: store_feedback(*args, "sarvam"), | |
inputs=[sarvam_rating, sarvam_feedback, sarvam_chatbot, sarvam_lang], | |
) | |
# Footer | |
gr.Markdown( | |
""" | |
<div style="text-align: center; margin-top: 2rem; padding: 1rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; color: white;"> | |
<p>๐ <strong>Powered by AI4Bharat & Sarvam AI</strong> | | |
Built with โค๏ธ using Gradio | | |
๐ง <strong>Optimized with KV Caching & Advanced Memory Management</strong></p> | |
</div> | |
""" | |
) | |
if __name__ == "__main__": | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True, | |
) |