Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,154 Bytes
b821413 c5ecbf5 7d4f47e 1ca4f47 b195470 0a59b92 c5ecbf5 3a650f2 b195470 3a650f2 c5ecbf5 0a59b92 3a650f2 1ca4f47 3a650f2 008725d 3f2ad6a 3a650f2 24bcef0 b195470 0a59b92 c5ecbf5 3a650f2 1ca4f47 3a650f2 1ca4f47 3a650f2 1ca4f47 3a650f2 1ca4f47 3a650f2 1ca4f47 3a650f2 1ca4f47 3a650f2 1ca4f47 c5ecbf5 0a59b92 c5ecbf5 0a59b92 c5ecbf5 3a650f2 c5ecbf5 3a650f2 24bcef0 3a650f2 c5ecbf5 0a59b92 c5ecbf5 3a650f2 1ca4f47 3a650f2 c5ecbf5 3a650f2 60a8e5b 3a650f2 c5ecbf5 3a650f2 60a8e5b 3a650f2 c5ecbf5 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 1ca4f47 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 b195470 3a650f2 60a8e5b 3a650f2 60a8e5b 0a59b92 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 0a59b92 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 0a59b92 3a650f2 0a59b92 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 60a8e5b 3a650f2 0a59b92 b195470 3a650f2 0a59b92 3a650f2 1ca4f47 3a650f2 0a59b92 3a650f2 247daa1 1ca4f47 e7da371 3a650f2 e7da371 3a650f2 1ca4f47 0a59b92 3a650f2 0a59b92 1ca4f47 3a650f2 0a59b92 1ca4f47 3a650f2 1ca4f47 3a650f2 b195470 3a650f2 b195470 1ca4f47 b195470 3a650f2 1ca4f47 b195470 1ca4f47 3a650f2 0a59b92 3a650f2 0a59b92 3a650f2 0a59b92 3a650f2 b195470 1ca4f47 3a650f2 1ca4f47 3a650f2 1ca4f47 3a650f2 0a59b92 3a650f2 0a59b92 3a650f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
import os
import torch
import spaces
import psycopg2
import gradio as gr
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gc
# Constants
MAX_MAX_NEW_TOKENS = 4096
MAX_INPUT_TOKEN_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
HF_TOKEN = os.environ.get("HF_TOKEN", "")
# Language lists
INDIC_LANGUAGES = [
"Hindi", "Bengali", "Telugu", "Marathi", "Tamil", "Urdu", "Gujarati",
"Kannada", "Odia", "Malayalam", "Punjabi", "Assamese", "Maithili",
"Santali", "Kashmiri", "Nepali", "Sindhi", "Konkani", "Dogri",
"Manipuri", "Bodo", "English", "Sanskrit"
]
SARVAM_LANGUAGES = INDIC_LANGUAGES
# Model configurations with optimizations
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
DEVICE_MAP = "cuda:0" if torch.cuda.is_available() else "cpu"
indictrans_model = AutoModelForCausalLM.from_pretrained(
"ai4bharat/IndicTrans3-beta",
torch_dtype=TORCH_DTYPE,
device_map=DEVICE_MAP,
token=HF_TOKEN,
low_cpu_mem_usage=True,
trust_remote_code=True
)
sarvam_model = AutoModelForCausalLM.from_pretrained(
"sarvamai/sarvam-translate",
torch_dtype=TORCH_DTYPE,
device_map=DEVICE_MAP,
token=HF_TOKEN,
low_cpu_mem_usage=True,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"ai4bharat/IndicTrans3-beta",
trust_remote_code=True
)
def format_message_for_translation(message, target_lang):
return f"Translate the following text to {target_lang}: {message}"
def store_feedback(rating, feedback_text, chat_history, tgt_lang, model_type):
try:
if not rating:
gr.Warning("Please select a rating before submitting feedback.", duration=5)
return None
if not feedback_text or feedback_text.strip() == "":
gr.Warning("Please provide some feedback before submitting.", duration=5)
return None
if not chat_history:
gr.Warning("Please provide the input text before submitting feedback.", duration=5)
return None
if len(chat_history[0]) < 2:
gr.Warning("Please translate the input text before submitting feedback.", duration=5)
return None
conn = psycopg2.connect(
host=os.getenv("DB_HOST"),
database=os.getenv("DB_NAME"),
user=os.getenv("DB_USER"),
password=os.getenv("DB_PASSWORD"),
port=os.getenv("DB_PORT"),
)
cursor = conn.cursor()
insert_query = """
INSERT INTO feedback
(tgt_lang, rating, feedback_txt, chat_history, model_type)
VALUES (%s, %s, %s, %s, %s)
"""
cursor.execute(insert_query, (tgt_lang, int(rating), feedback_text, chat_history, model_type))
conn.commit()
cursor.close()
conn.close()
gr.Info("Thank you for your feedback! ๐", duration=5)
except Exception as e:
print(f"Database error: {e}")
gr.Error("An error occurred while storing feedback. Please try again later.", duration=5)
def store_output(tgt_lang, input_text, output_text, model_type):
try:
conn = psycopg2.connect(
host=os.getenv("DB_HOST"),
database=os.getenv("DB_NAME"),
user=os.getenv("DB_USER"),
password=os.getenv("DB_PASSWORD"),
port=os.getenv("DB_PORT"),
)
cursor = conn.cursor()
insert_query = """
INSERT INTO translation
(input_txt, output_txt, tgt_lang, model_type)
VALUES (%s, %s, %s, %s)
"""
cursor.execute(insert_query, (input_text, output_text, tgt_lang, model_type))
conn.commit()
cursor.close()
conn.close()
except Exception as e:
print(f"Database error: {e}")
@spaces.GPU
def translate_message(
message: str,
chat_history: list[dict],
target_language: str = "Hindi",
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
model_type: str = "indictrans"
) -> Iterator[str]:
if model_type == "indictrans":
model = indictrans_model
elif model_type == "sarvam":
model = sarvam_model
if model is None or tokenizer is None:
yield "Error: Model failed to load. Please try again."
return
conversation = []
translation_request = format_message_for_translation(message, target_language)
conversation.append({"role": "user", "content": translation_request})
try:
input_ids = tokenizer.apply_chat_template(
conversation, return_tensors="pt", add_generation_prompt=True
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(
tokenizer, timeout=240.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
"use_cache": True, # Enable KV cache
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Clean up
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
store_output(target_language, message, "".join(outputs), model_type)
except Exception as e:
yield f"Translation error: {str(e)}"
# Enhanced CSS with beautiful styling
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
* {
font-family: 'Inter', sans-serif;
box-sizing: border-box;
}
.gradio-container {
background: #1a1a1a !important;
color: #e0e0e0;
min-height: 100vh;
}
.main-container {
background: #2a2a2a;
border-radius: 12px;
padding: 1.5rem;
margin: 1rem;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
}
.title-container {
text-align: center;
margin-bottom: 1.5rem;
padding: 1rem;
color: #a0a0ff;
}
.model-tab {
background: #3333a0;
border: none;
border-radius: 8px;
color: #ffffff;
font-weight: 500;
padding: 0.75rem 1.5rem;
transition: all 0.2s ease;
}
.model-tab:hover {
background: #4444b0;
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.4);
}
.language-dropdown {
background: #333333;
border: 1px solid #444444;
border-radius: 8px;
padding: 0.5rem;
font-size: 14px;
color: #e0e0e0;
transition: all 0.2s ease;
}
.language-dropdown:focus {
border-color: #6666ff;
box-shadow: 0 0 0 2px rgba(102, 102, 255, 0.2);
}
.chat-container {
background: #222222;
border-radius: 8px;
padding: 1rem;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
margin: 1rem 0;
}
.message-input {
background: #333333;
border: 1px solid #444444;
border-radius: 8px;
padding: 0.75rem;
font-size: 14px;
color: #e0e0e0;
transition: all 0.2s ease;
}
.message-input:focus {
border-color: #6666ff;
box-shadow: 0 0 0 2px rgba(102, 102, 255, 0.2);
}
.translate-btn {
background: #3333a0;
border: none;
border-radius: 8px;
color: #ffffff;
font-weight: 500;
padding: 0.75rem 1.5rem;
font-size: 14px;
cursor: pointer;
transition: all 0.2s ease;
}
.translate-btn:hover {
background: #4444b0;
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.4);
}
.examples-container {
background: #2a2a2a;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
}
.feedback-section {
background: #2a2a2a;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
border: none;
}
.advanced-options {
background: #2a2a2a;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
}
.slider-container .gr-slider {
background: #444444;
color: #e0e0e0;
}
.rating-container {
display: flex;
gap: 0.5rem;
justify-content: center;
margin: 0.5rem 0;
}
.feedback-btn {
background: #3333a0;
border: none;
border-radius: 8px;
color: #ffffff;
font-weight: 500;
padding: 0.5rem 1rem;
cursor: pointer;
transition: all 0.2s ease;
}
.feedback-btn:hover {
background: #4444b0;
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.4);
}
.stats-card {
background: #333333;
border-radius: 8px;
padding: 0.75rem;
text-align: center;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
margin: 0.5rem;
color: #e0e0e0;
}
.model-info {
background: #3333a0;
color: #ffffff;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
}
.animate-pulse {
animation: pulse 2s cubic-bezier(0.4, 0, 0.6, 1) infinite;
}
@keyframes pulse {
0%, 100% {
opacity: 1;
}
50% {
opacity: 0.5;
}
}
.loading-spinner {
border: 3px solid #444444;
border-top: 3px solid #6666ff;
border-radius: 50%;
width: 30px;
height: 30px;
animation: spin 1.5s linear infinite;
margin: 0 auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
"""
# Model descriptions
INDICTRANS_DESCRIPTION = """
<div class="model-info">
<h3>๐ IndicTrans3-Beta</h3>
<p><strong>Latest SOTA translation model from AI4Bharat</strong></p>
<ul>
<li>โ
Supports <strong>22 Indic languages</strong></li>
<li>โ
Document-level machine translation</li>
<li>โ
Optimized for real-world applications</li>
<li>โ
Enhanced with KV caching for faster inference</li>
</ul>
</div>
"""
SARVAM_DESCRIPTION = """
<div class="model-info">
<h3>๐ Sarvam Translate</h3>
<p><strong>Advanced multilingual translation model</strong></p>
<ul>
<li>โ
Supports <strong>22 Indic languages</strong></li>
<li>โ
High-quality translations</li>
<li>โ
Document-level machine translation</li>
<li>โ
Optimized for real-world applications</li>
<li>โ
Optimized for production use</li>
<li>โ
Enhanced with KV caching for faster inference</li>
</ul>
</div>
"""
def create_chatbot_interface(model_type, languages, description):
with gr.Column(elem_classes="main-container"):
gr.Markdown(description)
target_language = gr.Dropdown(
languages,
value=languages[0],
label="๐ Select Target Language",
elem_classes="language-dropdown",
)
chatbot = gr.Chatbot(
height=500,
elem_classes="chat-container",
show_copy_button=True,
avatar_images=["avatars/user_logo.png", "avatars/ai4bharat_logo.png"],
bubble_full_width=False,
show_label=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="โ๏ธ Enter text to translate...",
show_label=False,
container=False,
scale=9,
elem_classes="message-input",
)
submit_btn = gr.Button(
"๐ Translate",
scale=1,
elem_classes="translate-btn"
)
# Examples section
if model_type == "indictrans":
examples_data = [
"The Taj Mahal, an architectural marvel of white marble, stands majestically along the banks of the Yamuna River in Agra, India.",
"Kumbh Mela, the world's largest spiritual gathering, is a significant Hindu festival held at four sacred riverbanks.",
"India's classical dance forms, such as Bharatanatyam, Kathak, Odissi, are deeply rooted in tradition and storytelling.",
"Ayurveda, India's ancient medical system, emphasizes a holistic approach to health by balancing mind, body, and spirit.",
"Diwali, the festival of lights, symbolizes the victory of light over darkness and good over evil."
]
else:
examples_data = [
"Hello, how are you today?",
"I love learning new languages and cultures.",
"Technology is transforming the way we communicate.",
"The weather is beautiful today.",
"Thank you for your help and support."
]
with gr.Accordion("๐ Example Texts", open=False, elem_classes="examples-container"):
gr.Examples(
examples=examples_data,
inputs=msg,
label="Click on any example to try:"
)
# Feedback section
with gr.Accordion("๐ญ Provide Feedback", open=False, elem_classes="feedback-section"):
gr.Markdown("### ๐ Rate Translation & Share Feedback")
gr.Markdown("Help us improve translation quality with your valuable feedback!")
with gr.Row():
rating = gr.Radio(
["1", "2", "3", "4", "5"],
label="๐ Translation Quality Rating",
value=None
)
feedback_text = gr.Textbox(
placeholder="๐ฌ Share your thoughts about the translation quality, accuracy, or suggestions for improvement...",
label="๐ Your Feedback",
lines=3,
)
feedback_submit = gr.Button(
"๐ค Submit Feedback",
elem_classes="feedback-btn"
)
# Advanced options
with gr.Accordion("โ๏ธ Advanced Settings", open=False, elem_classes="advanced-options"):
gr.Markdown("### ๐ง Fine-tune Translation Parameters")
with gr.Row():
max_new_tokens = gr.Slider(
label="๐ Max New Tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
elem_classes="slider-container"
)
temperature = gr.Slider(
label="๐ก๏ธ Temperature",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.1,
elem_classes="slider-container"
)
with gr.Row():
top_p = gr.Slider(
label="๐ฏ Top-p (Nucleus Sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
elem_classes="slider-container"
)
top_k = gr.Slider(
label="๐ Top-k",
minimum=1,
maximum=100,
step=1,
value=50,
elem_classes="slider-container"
)
repetition_penalty = gr.Slider(
label="๐ Repetition Penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.0,
elem_classes="slider-container"
)
return (chatbot, msg, submit_btn, target_language, rating, feedback_text,
feedback_submit, max_new_tokens, temperature, top_p, top_k, repetition_penalty)
def user(user_message, history, target_lang):
return "", history + [[user_message, None]]
def bot(history, target_lang, max_tokens, temp, top_p_val, top_k_val, rep_penalty, model_type):
user_message = history[-1][0]
history[-1][1] = ""
for chunk in translate_message(
user_message, history[:-1], target_lang, max_tokens,
temp, top_p_val, top_k_val, rep_penalty, model_type
):
history[-1][1] = chunk
yield history
# Main Gradio interface
with gr.Blocks(css=css, title="๐ Advanced Multilingual Translation Hub", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
<div class="title-container">
<h1>๐ Advanced Multilingual Translation Hub</h1>
<p style="font-size: 18px; margin-top: 10px;">
Experience state-of-the-art translation with multiple AI models
</p>
</div>
""",
elem_classes="title-container"
)
# Statistics cards
with gr.Row():
gr.Markdown(
'<div class="stats-card"><h3>๐ฏ</h3><p><strong>22+</strong><br>Languages</p></div>',
elem_classes="stats-card"
)
gr.Markdown(
'<div class="stats-card"><h3>๐</h3><p><strong>2</strong><br>AI Models</p></div>',
elem_classes="stats-card"
)
gr.Markdown(
'<div class="stats-card"><h3>โก</h3><p><strong>Optimized</strong><br>Performance</p></div>',
elem_classes="stats-card"
)
gr.Markdown(
'<div class="stats-card"><h3>๐</h3><p><strong>Secure</strong><br>Processing</p></div>',
elem_classes="stats-card"
)
with gr.Tabs(elem_classes="model-tab") as tabs:
with gr.TabItem("๐ฎ๐ณ IndicTrans3-Beta", elem_id="indictrans-tab"):
indictrans_components = create_chatbot_interface("indictrans", INDIC_LANGUAGES, INDICTRANS_DESCRIPTION)
with gr.TabItem("๐ Sarvam Translate", elem_id="sarvam-tab"):
sarvam_components = create_chatbot_interface("sarvam", SARVAM_LANGUAGES, SARVAM_DESCRIPTION)
# Event handlers for IndicTrans
(indictrans_chatbot, indictrans_msg, indictrans_submit, indictrans_lang,
indictrans_rating, indictrans_feedback, indictrans_feedback_submit,
indictrans_max_tokens, indictrans_temp, indictrans_top_p,
indictrans_top_k, indictrans_rep_penalty) = indictrans_components
indictrans_msg.submit(
user, [indictrans_msg, indictrans_chatbot, indictrans_lang],
[indictrans_msg, indictrans_chatbot], queue=False
).then(
lambda *args: bot(*args, "indictrans"),
[indictrans_chatbot, indictrans_lang, indictrans_max_tokens,
indictrans_temp, indictrans_top_p, indictrans_top_k, indictrans_rep_penalty],
indictrans_chatbot,
)
indictrans_submit.click(
user, [indictrans_msg, indictrans_chatbot, indictrans_lang],
[indictrans_msg, indictrans_chatbot], queue=False
).then(
lambda *args: bot(*args, "indictrans"),
[indictrans_chatbot, indictrans_lang, indictrans_max_tokens,
indictrans_temp, indictrans_top_p, indictrans_top_k, indictrans_rep_penalty],
indictrans_chatbot,
)
indictrans_feedback_submit.click(
lambda *args: store_feedback(*args, "indictrans"),
inputs=[indictrans_rating, indictrans_feedback, indictrans_chatbot, indictrans_lang],
)
# Event handlers for Sarvam
(sarvam_chatbot, sarvam_msg, sarvam_submit, sarvam_lang,
sarvam_rating, sarvam_feedback, sarvam_feedback_submit,
sarvam_max_tokens, sarvam_temp, sarvam_top_p,
sarvam_top_k, sarvam_rep_penalty) = sarvam_components
sarvam_msg.submit(
user, [sarvam_msg, sarvam_chatbot, sarvam_lang],
[sarvam_msg, sarvam_chatbot], queue=False
).then(
lambda *args: bot(*args, "sarvam"),
[sarvam_chatbot, sarvam_lang, sarvam_max_tokens,
sarvam_temp, sarvam_top_p, sarvam_top_k, sarvam_rep_penalty],
sarvam_chatbot,
)
sarvam_submit.click(
user, [sarvam_msg, sarvam_chatbot, sarvam_lang],
[sarvam_msg, sarvam_chatbot], queue=False
).then(
lambda *args: bot(*args, "sarvam"),
[sarvam_chatbot, sarvam_lang, sarvam_max_tokens,
sarvam_temp, sarvam_top_p, sarvam_top_k, sarvam_rep_penalty],
sarvam_chatbot,
)
sarvam_feedback_submit.click(
lambda *args: store_feedback(*args, "sarvam"),
inputs=[sarvam_rating, sarvam_feedback, sarvam_chatbot, sarvam_lang],
)
# Footer
gr.Markdown(
"""
<div style="text-align: center; margin-top: 2rem; padding: 1rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; color: white;">
<p>๐ <strong>Powered by AI4Bharat & Sarvam AI</strong> |
Built with โค๏ธ using Gradio |
๐ง <strong>Optimized with KV Caching & Advanced Memory Management</strong></p>
</div>
"""
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
) |