Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -28,72 +28,29 @@ SARVAM_LANGUAGES = INDIC_LANGUAGES
|
|
28 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
29 |
DEVICE_MAP = "auto" if torch.cuda.is_available() else None
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
54 |
-
# Enable optimizations
|
55 |
-
if hasattr(self.indictrans_model, 'eval'):
|
56 |
-
self.indictrans_model.eval()
|
57 |
-
if torch.cuda.is_available():
|
58 |
-
torch.cuda.empty_cache()
|
59 |
-
except Exception as e:
|
60 |
-
print(f"Error loading IndicTrans model: {e}")
|
61 |
-
|
62 |
-
def load_sarvam_model(self):
|
63 |
-
if self.sarvam_model is None:
|
64 |
-
try:
|
65 |
-
self.sarvam_model = AutoModelForCausalLM.from_pretrained(
|
66 |
-
"sarvamai/sarvam-translate",
|
67 |
-
torch_dtype=TORCH_DTYPE,
|
68 |
-
device_map=DEVICE_MAP,
|
69 |
-
token=HF_TOKEN,
|
70 |
-
low_cpu_mem_usage=True,
|
71 |
-
trust_remote_code=True
|
72 |
-
)
|
73 |
-
self.sarvam_tokenizer = AutoTokenizer.from_pretrained(
|
74 |
-
"sarvamai/sarvam-translate",
|
75 |
-
trust_remote_code=True
|
76 |
-
)
|
77 |
-
# Enable optimizations
|
78 |
-
if hasattr(self.sarvam_model, 'eval'):
|
79 |
-
self.sarvam_model.eval()
|
80 |
-
if torch.cuda.is_available():
|
81 |
-
torch.cuda.empty_cache()
|
82 |
-
except Exception as e:
|
83 |
-
print(f"Error loading Sarvam model: {e}")
|
84 |
-
|
85 |
-
def get_model_and_tokenizer(self, model_type):
|
86 |
-
if model_type == "indictrans":
|
87 |
-
if self.indictrans_model is None:
|
88 |
-
self.load_indictrans_model()
|
89 |
-
return self.indictrans_model, self.indictrans_tokenizer
|
90 |
-
else: # sarvam
|
91 |
-
if self.sarvam_model is None:
|
92 |
-
self.load_sarvam_model()
|
93 |
-
return self.sarvam_model, self.sarvam_tokenizer
|
94 |
|
95 |
-
# Global model manager
|
96 |
-
model_manager = ModelManager()
|
97 |
|
98 |
def format_message_for_translation(message, target_lang):
|
99 |
return f"Translate the following text to {target_lang}: {message}"
|
@@ -175,7 +132,10 @@ def translate_message(
|
|
175 |
model_type: str = "indictrans"
|
176 |
) -> Iterator[str]:
|
177 |
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
if model is None or tokenizer is None:
|
181 |
yield "Error: Model failed to load. Please try again."
|
|
|
28 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
29 |
DEVICE_MAP = "auto" if torch.cuda.is_available() else None
|
30 |
|
31 |
+
indictrans_model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
"ai4bharat/IndicTrans3-beta",
|
33 |
+
torch_dtype=TORCH_DTYPE,
|
34 |
+
device_map=DEVICE_MAP,
|
35 |
+
token=HF_TOKEN,
|
36 |
+
low_cpu_mem_usage=True,
|
37 |
+
trust_remote_code=True
|
38 |
+
)
|
39 |
+
|
40 |
+
sarvam_model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
"sarvamai/sarvam-translate",
|
42 |
+
torch_dtype=TORCH_DTYPE,
|
43 |
+
device_map=DEVICE_MAP,
|
44 |
+
token=HF_TOKEN,
|
45 |
+
low_cpu_mem_usage=True,
|
46 |
+
trust_remote_code=True
|
47 |
+
)
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
50 |
+
"ai4bharat/IndicTrans3-beta",
|
51 |
+
trust_remote_code=True
|
52 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
54 |
|
55 |
def format_message_for_translation(message, target_lang):
|
56 |
return f"Translate the following text to {target_lang}: {message}"
|
|
|
132 |
model_type: str = "indictrans"
|
133 |
) -> Iterator[str]:
|
134 |
|
135 |
+
if model_type == "indictrans":
|
136 |
+
model = indictrans_model
|
137 |
+
elif model_type == "sarvam":
|
138 |
+
model = sarvam_model
|
139 |
|
140 |
if model is None or tokenizer is None:
|
141 |
yield "Error: Model failed to load. Please try again."
|