Files changed (1) hide show
  1. app.py +77 -29
app.py CHANGED
@@ -3,32 +3,89 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
 
 
 
 
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
 
 
 
 
 
21
 
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
26
  """
27
  # --- Determine HF Space Runtime URL and Repo URL ---
28
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,13 +95,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
@@ -139,22 +196,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
139
  results_df = pd.DataFrame(results_log)
140
  return status_message, results_df
141
 
142
-
143
  # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
  2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
  3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
@@ -163,7 +213,6 @@ with gr.Blocks() as demo:
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -173,9 +222,8 @@ with gr.Blocks() as demo:
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
@@ -183,7 +231,7 @@ if __name__ == "__main__":
183
  else:
184
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"βœ… SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
@@ -192,5 +240,5 @@ if __name__ == "__main__":
192
 
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from langchain.agents import AgentExecutor, create_react_agent
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_core.prompts import PromptTemplate
9
+ from langchain_community.tools import DuckDuckGoSearchRun # <-- IMPORTED DUCKDUCKGO
10
 
 
11
  # --- Constants ---
12
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
13
 
14
+ # --- Tool Definition ---
15
+ # Replaced Google Search with DuckDuckGo. This tool doesn't require an API key.
16
+ search_tool = DuckDuckGoSearchRun()
17
+
18
+
19
+ # --- Agent Definition ---
20
+ class RealAgent:
21
  def __init__(self):
22
+ # Initialize the language model
23
+ self.llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro-latest", temperature=0)
24
+
25
+ # Define the prompt template
26
+ prompt_template = """
27
+ Answer the following questions as best you can. You have access to the following tools:
28
+
29
+ {tools}
30
+
31
+ Use the following format:
32
+
33
+ Question: the input question you must answer
34
+ Thought: you should always think about what to do
35
+ Action: the action to take, should be one of [{tool_names}]
36
+ Action Input: the input to the action
37
+ Observation: the result of the action
38
+ ... (this Thought/Action/Action Input/Observation can repeat N times)
39
+ Thought: I now know the final answer
40
+ Final Answer: the final answer to the original input question
41
+
42
+ Begin!
43
+
44
+ Question: {input}
45
+ Thought:{agent_scratchpad}
46
+ """
47
+ self.prompt = PromptTemplate.from_template(prompt_template)
48
+
49
+ # Define the tools - now using the DuckDuckGo tool
50
+ self.tools = [search_tool]
51
+
52
+ # Create the agent
53
+ self.agent = create_react_agent(
54
+ self.llm,
55
+ self.tools,
56
+ self.prompt,
57
+ )
58
+
59
+ # Create the agent executor
60
+ self.agent_executor = AgentExecutor(
61
+ agent=self.agent,
62
+ tools=self.tools,
63
+ verbose=True,
64
+ handle_parsing_errors=True,
65
+ max_iterations=10,
66
+ )
67
+
68
  def __call__(self, question: str) -> str:
69
+ try:
70
+ # We must set the tool name explicitly in the invoke call for some versions of langchain
71
+ response = self.agent_executor.invoke({
72
+ "input": question,
73
+ "tool_names": ", ".join([t.name for t in self.tools])
74
+ })
75
+ return response.get("output", "No answer found.")
76
+ except Exception as e:
77
+ return f"Error invoking agent: {e}"
78
 
79
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
80
  """
81
+ Fetches all questions, runs the RealAgent on them, submits all answers,
82
  and displays the results.
83
  """
84
  # --- Determine HF Space Runtime URL and Repo URL ---
85
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
86
 
87
  if profile:
88
+ username = f"{profile.username}"
89
  print(f"User logged in: {username}")
90
  else:
91
  print("User not logged in.")
 
95
  questions_url = f"{api_url}/questions"
96
  submit_url = f"{api_url}/submit"
97
 
98
+ # 1. Instantiate Agent
99
  try:
100
+ agent = RealAgent()
101
  except Exception as e:
102
  print(f"Error instantiating agent: {e}")
103
  return f"Error initializing agent: {e}", None
104
+
105
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
106
  print(agent_code)
107
 
 
196
  results_df = pd.DataFrame(results_log)
197
  return status_message, results_df
198
 
 
199
  # --- Build Gradio Interface using Blocks ---
200
  with gr.Blocks() as demo:
201
+ gr.Markdown("# Real Agent Evaluation Runner (with DuckDuckGo)")
202
  gr.Markdown(
203
  """
204
  **Instructions:**
205
+ 1. This space is a solution to the final assignment of the Hugging Face AI Agents course, using Gemini Pro and DuckDuckGo.
 
206
  2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
207
  3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
 
 
208
  """
209
  )
210
 
 
213
  run_button = gr.Button("Run Evaluation & Submit All Answers")
214
 
215
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
216
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
217
 
218
  run_button.click(
 
222
 
223
  if __name__ == "__main__":
224
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
225
  space_host_startup = os.getenv("SPACE_HOST")
226
+ space_id_startup = os.getenv("SPACE_ID")
227
 
228
  if space_host_startup:
229
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
 
231
  else:
232
  print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
233
 
234
+ if space_id_startup:
235
  print(f"βœ… SPACE_ID found: {space_id_startup}")
236
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
237
  print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
 
240
 
241
  print("-"*(60 + len(" App Starting ")) + "\n")
242
 
243
+ print("Launching Gradio Interface for Real Agent Evaluation...")
244
  demo.launch(debug=True, share=False)