Files changed (1) hide show
  1. app.py +71 -114
app.py CHANGED
@@ -1,169 +1,128 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
13
  class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
  print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
 
 
 
 
 
 
36
 
37
  api_url = DEFAULT_API_URL
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
 
51
- # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
  except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
 
75
  print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
 
98
 
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
104
  result_data = response.json()
105
  final_status = (
106
- f"Submission Successful!\n"
107
  f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
 
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
 
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
 
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
 
154
  ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -171,26 +130,24 @@ with gr.Blocks() as demo:
171
  outputs=[status_output, results_table]
172
  )
173
 
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
- print(f"βœ… SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
  else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"βœ… SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
 
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ from transformers import pipeline
6
+ from typing import Optional
7
 
 
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
+ # --- Smart Agent Definition ---
12
+ from transformers import pipeline
13
+
14
  class BasicAgent:
15
  def __init__(self):
16
+ print("Loading advanced model pipeline...")
17
+ # You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API)
18
+ self.generator = pipeline("text2text-generation", model="google/flan-t5-large")
19
+
20
  def __call__(self, question: str) -> str:
21
+ try:
22
+ prompt = f"Answer the following question clearly and concisely:\n{question.strip()}"
23
+ response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0)
24
+ answer = response[0]["generated_text"].strip()
25
+ return answer
26
+ except Exception as e:
27
+ print(f"Agent failed to answer question: {e}")
28
+ return "ERROR"
29
+
30
+
31
+ # --- Submission Logic ---
32
+ def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
33
+ space_id = os.getenv("SPACE_ID")
34
+ if not profile:
 
 
 
35
  print("User not logged in.")
36
+ return "Please login to Hugging Face with the button.", None
37
+
38
+ username = profile.username.strip()
39
+ print(f"User logged in: {username}")
40
+
41
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
42
+ print(f"Agent code link: {agent_code}")
43
 
44
  api_url = DEFAULT_API_URL
45
  questions_url = f"{api_url}/questions"
46
  submit_url = f"{api_url}/submit"
47
 
 
48
  try:
49
  agent = BasicAgent()
50
  except Exception as e:
 
51
  return f"Error initializing agent: {e}", None
 
 
 
52
 
 
53
  print(f"Fetching questions from: {questions_url}")
54
  try:
55
  response = requests.get(questions_url, timeout=15)
56
  response.raise_for_status()
57
  questions_data = response.json()
58
  if not questions_data:
59
+ return "Fetched questions list is empty.", None
 
 
 
 
 
 
 
 
 
60
  except Exception as e:
61
+ return f"Error fetching questions: {e}", None
 
62
 
 
63
  results_log = []
64
  answers_payload = []
65
+
66
  print(f"Running agent on {len(questions_data)} questions...")
67
  for item in questions_data:
68
  task_id = item.get("task_id")
69
  question_text = item.get("question")
70
+ if not task_id or not question_text:
 
71
  continue
72
  try:
73
+ answer = agent(question_text)
74
+ answers_payload.append({"task_id": task_id, "submitted_answer": answer})
75
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
76
  except Exception as e:
77
+ error_msg = f"AGENT ERROR: {e}"
78
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
79
 
80
  if not answers_payload:
81
+ return "No answers generated for submission.", pd.DataFrame(results_log)
 
82
 
83
+ submission_data = {
84
+ "username": username,
85
+ "agent_code": agent_code,
86
+ "answers": answers_payload
87
+ }
88
 
89
+ print(f"Submitting {len(answers_payload)} answers...")
 
90
  try:
91
  response = requests.post(submit_url, json=submission_data, timeout=60)
92
  response.raise_for_status()
93
  result_data = response.json()
94
  final_status = (
95
+ f"βœ… Submission Successful!\n"
96
  f"User: {result_data.get('username')}\n"
97
+ f"Score: {result_data.get('score', 'N/A')}% "
98
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
99
+ f"Message: {result_data.get('message', 'No message')}"
100
  )
101
+ return final_status, pd.DataFrame(results_log)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  except Exception as e:
103
+ return f"❌ Submission failed: {e}", pd.DataFrame(results_log)
 
 
 
104
 
105
+ # --- Gradio Interface ---
 
106
  with gr.Blocks() as demo:
107
+ gr.Markdown("# πŸ€– Basic Agent Evaluation Runner")
108
+
109
  gr.Markdown(
110
  """
111
  **Instructions:**
112
 
113
+ 1. Clone this space and implement your agent logic.
114
+ 2. Log in with your Hugging Face account using the button below.
115
+ 3. Click **Run Evaluation & Submit All Answers** to test and submit your agent.
116
 
117
  ---
118
+ ⚠️ Note: The first run may take time depending on model and question count.
 
 
119
  """
120
  )
121
 
122
  gr.LoginButton()
 
123
  run_button = gr.Button("Run Evaluation & Submit All Answers")
124
 
125
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
126
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
127
 
128
  run_button.click(
 
130
  outputs=[status_output, results_table]
131
  )
132
 
133
+ # --- Run App ---
134
  if __name__ == "__main__":
135
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
136
  space_host_startup = os.getenv("SPACE_HOST")
137
+ space_id_startup = os.getenv("SPACE_ID")
138
 
139
  if space_host_startup:
140
+ print(f"βœ… SPACE_HOST: {space_host_startup}")
141
+ print(f"Runtime URL: https://{space_host_startup}.hf.space")
142
  else:
143
+ print("ℹ️ SPACE_HOST not set.")
144
 
145
+ if space_id_startup:
146
+ print(f"βœ… SPACE_ID: {space_id_startup}")
147
+ print(f"Repo: https://huggingface.co/spaces/{space_id_startup}")
 
148
  else:
149
+ print("ℹ️ SPACE_ID not set.")
 
 
150
 
151
+ print("-" * 80)
152
+ print("Launching Gradio App...")
153
+ demo.launch(debug=True, share=False)