Update app.py
#175
by
shaghayeghhp
- opened
app.py
CHANGED
@@ -1,169 +1,128 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# ---
|
12 |
-
|
|
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
-
print("
|
|
|
|
|
|
|
16 |
def __call__(self, question: str) -> str:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
-
print(f"User logged in: {username}")
|
33 |
-
else:
|
34 |
print("User not logged in.")
|
35 |
-
return "Please
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
api_url = DEFAULT_API_URL
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch Questions
|
52 |
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
response = requests.get(questions_url, timeout=15)
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
if not questions_data:
|
58 |
-
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
|
72 |
-
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|
|
|
75 |
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
79 |
-
if not task_id or question_text
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer":
|
85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer":
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
|
90 |
if not answers_payload:
|
91 |
-
|
92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
-
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
response.raise_for_status()
|
104 |
result_data = response.json()
|
105 |
final_status = (
|
106 |
-
f"Submission Successful!\n"
|
107 |
f"User: {result_data.get('username')}\n"
|
108 |
-
f"
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}
|
110 |
-
f"Message: {result_data.get('message', 'No message
|
111 |
)
|
112 |
-
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
|
150 |
-
1.
|
151 |
-
2.
|
152 |
-
3.
|
153 |
|
154 |
---
|
155 |
-
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
gr.LoginButton()
|
162 |
-
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -171,26 +130,24 @@ with gr.Blocks() as demo:
|
|
171 |
outputs=[status_output, results_table]
|
172 |
)
|
173 |
|
|
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
-
print(f"β
SPACE_HOST
|
182 |
-
print(f"
|
183 |
else:
|
184 |
-
print("βΉοΈ
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
-
print(f"β
SPACE_ID
|
188 |
-
print(f"
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
else:
|
191 |
-
print("βΉοΈ
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
|
195 |
-
print("
|
196 |
-
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from transformers import pipeline
|
6 |
+
from typing import Optional
|
7 |
|
|
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
+
# --- Smart Agent Definition ---
|
12 |
+
from transformers import pipeline
|
13 |
+
|
14 |
class BasicAgent:
|
15 |
def __init__(self):
|
16 |
+
print("Loading advanced model pipeline...")
|
17 |
+
# You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API)
|
18 |
+
self.generator = pipeline("text2text-generation", model="google/flan-t5-large")
|
19 |
+
|
20 |
def __call__(self, question: str) -> str:
|
21 |
+
try:
|
22 |
+
prompt = f"Answer the following question clearly and concisely:\n{question.strip()}"
|
23 |
+
response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0)
|
24 |
+
answer = response[0]["generated_text"].strip()
|
25 |
+
return answer
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Agent failed to answer question: {e}")
|
28 |
+
return "ERROR"
|
29 |
+
|
30 |
+
|
31 |
+
# --- Submission Logic ---
|
32 |
+
def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
|
33 |
+
space_id = os.getenv("SPACE_ID")
|
34 |
+
if not profile:
|
|
|
|
|
|
|
35 |
print("User not logged in.")
|
36 |
+
return "Please login to Hugging Face with the button.", None
|
37 |
+
|
38 |
+
username = profile.username.strip()
|
39 |
+
print(f"User logged in: {username}")
|
40 |
+
|
41 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
42 |
+
print(f"Agent code link: {agent_code}")
|
43 |
|
44 |
api_url = DEFAULT_API_URL
|
45 |
questions_url = f"{api_url}/questions"
|
46 |
submit_url = f"{api_url}/submit"
|
47 |
|
|
|
48 |
try:
|
49 |
agent = BasicAgent()
|
50 |
except Exception as e:
|
|
|
51 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
52 |
|
|
|
53 |
print(f"Fetching questions from: {questions_url}")
|
54 |
try:
|
55 |
response = requests.get(questions_url, timeout=15)
|
56 |
response.raise_for_status()
|
57 |
questions_data = response.json()
|
58 |
if not questions_data:
|
59 |
+
return "Fetched questions list is empty.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
+
return f"Error fetching questions: {e}", None
|
|
|
62 |
|
|
|
63 |
results_log = []
|
64 |
answers_payload = []
|
65 |
+
|
66 |
print(f"Running agent on {len(questions_data)} questions...")
|
67 |
for item in questions_data:
|
68 |
task_id = item.get("task_id")
|
69 |
question_text = item.get("question")
|
70 |
+
if not task_id or not question_text:
|
|
|
71 |
continue
|
72 |
try:
|
73 |
+
answer = agent(question_text)
|
74 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
75 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
|
76 |
except Exception as e:
|
77 |
+
error_msg = f"AGENT ERROR: {e}"
|
78 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
|
79 |
|
80 |
if not answers_payload:
|
81 |
+
return "No answers generated for submission.", pd.DataFrame(results_log)
|
|
|
82 |
|
83 |
+
submission_data = {
|
84 |
+
"username": username,
|
85 |
+
"agent_code": agent_code,
|
86 |
+
"answers": answers_payload
|
87 |
+
}
|
88 |
|
89 |
+
print(f"Submitting {len(answers_payload)} answers...")
|
|
|
90 |
try:
|
91 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
92 |
response.raise_for_status()
|
93 |
result_data = response.json()
|
94 |
final_status = (
|
95 |
+
f"β
Submission Successful!\n"
|
96 |
f"User: {result_data.get('username')}\n"
|
97 |
+
f"Score: {result_data.get('score', 'N/A')}% "
|
98 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
|
99 |
+
f"Message: {result_data.get('message', 'No message')}"
|
100 |
)
|
101 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
except Exception as e:
|
103 |
+
return f"β Submission failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
104 |
|
105 |
+
# --- Gradio Interface ---
|
|
|
106 |
with gr.Blocks() as demo:
|
107 |
+
gr.Markdown("# π€ Basic Agent Evaluation Runner")
|
108 |
+
|
109 |
gr.Markdown(
|
110 |
"""
|
111 |
**Instructions:**
|
112 |
|
113 |
+
1. Clone this space and implement your agent logic.
|
114 |
+
2. Log in with your Hugging Face account using the button below.
|
115 |
+
3. Click **Run Evaluation & Submit All Answers** to test and submit your agent.
|
116 |
|
117 |
---
|
118 |
+
β οΈ Note: The first run may take time depending on model and question count.
|
|
|
|
|
119 |
"""
|
120 |
)
|
121 |
|
122 |
gr.LoginButton()
|
|
|
123 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
124 |
|
125 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
126 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
127 |
|
128 |
run_button.click(
|
|
|
130 |
outputs=[status_output, results_table]
|
131 |
)
|
132 |
|
133 |
+
# --- Run App ---
|
134 |
if __name__ == "__main__":
|
135 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
136 |
space_host_startup = os.getenv("SPACE_HOST")
|
137 |
+
space_id_startup = os.getenv("SPACE_ID")
|
138 |
|
139 |
if space_host_startup:
|
140 |
+
print(f"β
SPACE_HOST: {space_host_startup}")
|
141 |
+
print(f"Runtime URL: https://{space_host_startup}.hf.space")
|
142 |
else:
|
143 |
+
print("βΉοΈ SPACE_HOST not set.")
|
144 |
|
145 |
+
if space_id_startup:
|
146 |
+
print(f"β
SPACE_ID: {space_id_startup}")
|
147 |
+
print(f"Repo: https://huggingface.co/spaces/{space_id_startup}")
|
|
|
148 |
else:
|
149 |
+
print("βΉοΈ SPACE_ID not set.")
|
|
|
|
|
150 |
|
151 |
+
print("-" * 80)
|
152 |
+
print("Launching Gradio App...")
|
153 |
+
demo.launch(debug=True, share=False)
|