Files changed (3) hide show
  1. agent.py +87 -0
  2. app.py +196 -195
  3. requirements.txt +7 -2
agent.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from llama_index.llms.openai import OpenAI
2
+ from llama_index.tools.wikipedia.base import WikipediaToolSpec
3
+ from llama_index.core.llms import ChatMessage
4
+ from llama_index.core.agent import ReActAgent
5
+ import logging
6
+ from llama_index.llms.deepinfra import DeepInfraLLM
7
+ import os
8
+ from llama_index.tools.tavily_research import TavilyToolSpec
9
+ from llama_index.core.prompts import PromptTemplate
10
+ import requests
11
+ import json
12
+
13
+ class CuongBasicAgent:
14
+ """
15
+ Agent using LlamaIndex to fetch data from the web and answer GAIA benchmark questions.
16
+ """
17
+ def __init__(self):
18
+ system_prompt = """
19
+ Value: You are an advanced assistant designed to help with a variety of tasks, including answering questions, providing summaries, and performing other types of analyses.
20
+
21
+ ## Tools
22
+
23
+ You have access to a wide variety of tools. You are responsible for using the tools in any sequence you deem appropriate to complete the task at hand.
24
+ This may require breaking the task into subtasks and using different tools to complete each subtask.
25
+
26
+ You have access to the following tools:
27
+ {tool_desc}
28
+
29
+
30
+ ## Output Format
31
+
32
+ Please answer in the same language as the question and use the following format:
33
+
34
+ ```
35
+ Thought: The current language of the user is: (user's language). I need to use a tool to help me answer the question.
36
+ Action: tool name (one of {tool_names}) if using a tool.
37
+ Action Input: the input to the tool, in a JSON format representing the kwargs (e.g. {{"input": "hello world", "num_beams": 5}})
38
+ ```
39
+
40
+ Please ALWAYS start with a Thought.
41
+
42
+ NEVER surround your response with markdown code markers. You may use code markers within your response if you need to.
43
+
44
+ Please use a valid JSON format for the Action Input. Do NOT do this {{'input': 'hello world', 'num_beams': 5}}.
45
+
46
+ If this format is used, the tool will respond in the following format:
47
+
48
+ ```
49
+ Observation: tool response
50
+ ```
51
+
52
+ You should keep repeating the above format till you have enough information to answer the question without using any more tools. At that point, you MUST respond in one of the following two formats:
53
+
54
+ ```
55
+ Thought: I can answer without using any more tools. I'll use the user's language to answer
56
+ Answer: [your answer here (In the same language as the user's question)]
57
+ ```
58
+
59
+ ```
60
+ Thought: I cannot answer the question with the provided tools.
61
+ Answer: [your answer here (In the same language as the user's question)]
62
+ ```
63
+
64
+ The answer should be concise and to the point. For example, if the answer is a number, just return the number without any additional text. If the question is "What is the capital of France?", the answer should be "Paris".
65
+
66
+ If the question includes guidelines regarding the format of the answer, please follow those guidelines faithfully
67
+ ## Current Conversation
68
+
69
+ Below is the current conversation consisting of interleaving human and assistant messages.
70
+ """
71
+ react_system_prompt = PromptTemplate(system_prompt)
72
+ #llm = DeepInfraLLM(
73
+ # model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8",api_key=os.getenv("DEEPINFRA_API_KEY"))
74
+
75
+ llm = OpenAI(model='gpt-4.1')
76
+ agent = ReActAgent.from_tools(
77
+ llm=llm,
78
+ tools=WikipediaToolSpec().to_tool_list() + TavilyToolSpec(api_key=os.getenv('TAVILY_API_KEY')).to_tool_list(),
79
+ verbose=True,
80
+ )
81
+
82
+ agent.update_prompts({"agent_worker:system_prompt": react_system_prompt})
83
+ self.agent = agent
84
+
85
+ def __call__(self, question: str) -> str:
86
+ answer = self.agent.query(question)
87
+ return str(answer)
app.py CHANGED
@@ -1,196 +1,197 @@
1
- import os
2
- import gradio as gr
3
- import requests
4
- import inspect
5
- import pandas as pd
6
-
7
- # (Keep Constants as is)
8
- # --- Constants ---
9
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
-
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
- try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
- except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
- """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
- """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
-
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
 
196
  demo.launch(debug=True, share=False)
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from agent import CuongBasicAgent
7
+
8
+ # (Keep Constants as is)
9
+ # --- Constants ---
10
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
+
12
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
13
+ """
14
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
15
+ and displays the results.
16
+ """
17
+ # --- Determine HF Space Runtime URL and Repo URL ---
18
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
19
+
20
+ if profile:
21
+ username= f"{profile.username}"
22
+ print(f"User logged in: {username}")
23
+ if username != os.getenv("whoami"):
24
+ return f"You are not {os.getenv('whoami')}", None
25
+ else:
26
+ print("User not logged in.")
27
+ return "Please Login to Hugging Face with the button.", None
28
+
29
+ api_url = DEFAULT_API_URL
30
+ questions_url = f"{api_url}/questions"
31
+ submit_url = f"{api_url}/submit"
32
+ files_url = f"{api_url}/files/"
33
+
34
+ # 1. Instantiate Agent ( modify this part to create your agent)
35
+ try:
36
+ agent = CuongBasicAgent()
37
+ except Exception as e:
38
+ print(f"Error instantiating agent: {e}")
39
+ return f"Error initializing agent: {e}", None
40
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
41
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
42
+ print(agent_code)
43
+
44
+ # 2. Fetch Questions
45
+ print(f"Fetching questions from: {questions_url}")
46
+ try:
47
+ response = requests.get(questions_url, timeout=15)
48
+ response.raise_for_status()
49
+ questions_data = response.json()
50
+ if not questions_data:
51
+ print("Fetched questions list is empty.")
52
+ return "Fetched questions list is empty or invalid format.", None
53
+ print(f"Fetched {len(questions_data)} questions.")
54
+ except requests.exceptions.RequestException as e:
55
+ print(f"Error fetching questions: {e}")
56
+ return f"Error fetching questions: {e}", None
57
+ except requests.exceptions.JSONDecodeError as e:
58
+ print(f"Error decoding JSON response from questions endpoint: {e}")
59
+ print(f"Response text: {response.text[:500]}")
60
+ return f"Error decoding server response for questions: {e}", None
61
+ except Exception as e:
62
+ print(f"An unexpected error occurred fetching questions: {e}")
63
+ return f"An unexpected error occurred fetching questions: {e}", None
64
+
65
+ # 3. Run your Agent
66
+ results_log = []
67
+ answers_payload = []
68
+ print(f"Running agent on {len(questions_data)} questions...")
69
+ for item in questions_data:
70
+ task_id = item.get("task_id")
71
+ question_text = item.get("question")
72
+ if not task_id or question_text is None:
73
+ print(f"Skipping item with missing task_id or question: {item}")
74
+ continue
75
+
76
+ # Manage questions with files
77
+ if item.get("file_name") and os.path.splitext(item.get("file_name"))[1] in ['.py', '.txt', '.json']:
78
+ file = requests.get(files_url+task_id, timeout=15).text
79
+ complete_question_text = f'{question_text}\nThis is the accompanying file:\n{file}'
80
+ else:
81
+ complete_question_text = question_text
82
+
83
+ try:
84
+ submitted_answer = agent(complete_question_text)
85
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
86
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
87
+ except Exception as e:
88
+ print(f"Error running agent on task {task_id}: {e}")
89
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
90
+
91
+ if not answers_payload:
92
+ print("Agent did not produce any answers to submit.")
93
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
94
+
95
+ # 4. Prepare Submission
96
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
97
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
98
+ print(status_update)
99
+
100
+ # 5. Submit
101
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
102
+ try:
103
+ response = requests.post(submit_url, json=submission_data, timeout=180)
104
+ response.raise_for_status()
105
+ result_data = response.json()
106
+ final_status = (
107
+ f"Submission Successful!\n"
108
+ f"User: {result_data.get('username')}\n"
109
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
110
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
111
+ f"Message: {result_data.get('message', 'No message received.')}"
112
+ )
113
+ print("Submission successful.")
114
+ results_df = pd.DataFrame(results_log)
115
+ return final_status, results_df
116
+ except requests.exceptions.HTTPError as e:
117
+ error_detail = f"Server responded with status {e.response.status_code}."
118
+ try:
119
+ error_json = e.response.json()
120
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
121
+ except requests.exceptions.JSONDecodeError:
122
+ error_detail += f" Response: {e.response.text[:500]}"
123
+ status_message = f"Submission Failed: {error_detail}"
124
+ print(status_message)
125
+ results_df = pd.DataFrame(results_log)
126
+ return status_message, results_df
127
+ except requests.exceptions.Timeout:
128
+ status_message = "Submission Failed: The request timed out."
129
+ print(status_message)
130
+ results_df = pd.DataFrame(results_log)
131
+ return status_message, results_df
132
+ except requests.exceptions.RequestException as e:
133
+ status_message = f"Submission Failed: Network error - {e}"
134
+ print(status_message)
135
+ results_df = pd.DataFrame(results_log)
136
+ return status_message, results_df
137
+ except Exception as e:
138
+ status_message = f"An unexpected error occurred during submission: {e}"
139
+ print(status_message)
140
+ results_df = pd.DataFrame(results_log)
141
+ return status_message, results_df
142
+
143
+
144
+ # --- Build Gradio Interface using Blocks ---
145
+ with gr.Blocks() as demo:
146
+ gr.Markdown("# Basic Agent Evaluation Runner")
147
+ gr.Markdown(
148
+ """
149
+ **Instructions:**
150
+
151
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
152
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
153
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
154
+
155
+ ---
156
+ **Disclaimers:**
157
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
158
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
159
+ """
160
+ )
161
+
162
+ gr.LoginButton()
163
+
164
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
165
+
166
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
167
+ # Removed max_rows=10 from DataFrame constructor
168
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
169
+
170
+ run_button.click(
171
+ fn=run_and_submit_all,
172
+ outputs=[status_output, results_table]
173
+ )
174
+
175
+ if __name__ == "__main__":
176
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
177
+ # Check for SPACE_HOST and SPACE_ID at startup for information
178
+ space_host_startup = os.getenv("SPACE_HOST")
179
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
180
+
181
+ if space_host_startup:
182
+ print(f" SPACE_HOST found: {space_host_startup}")
183
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
184
+ else:
185
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
186
+
187
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
188
+ print(f" SPACE_ID found: {space_id_startup}")
189
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
190
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
191
+ else:
192
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
193
+
194
+ print("-"*(60 + len(" App Starting ")) + "\n")
195
+
196
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
197
  demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -1,2 +1,7 @@
1
- gradio
2
- requests
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ pandas
4
+ llama-index-llms-openai
5
+ llama-index-tools-wikipedia
6
+ llama-index-llms-deepinfra
7
+ llama-index-tools-tavily_research