Files changed (1) hide show
  1. app.py +59 -89
app.py CHANGED
@@ -3,32 +3,53 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
  def __init__(self):
15
- print("BasicAgent initialized.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
- """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
- """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
 
 
 
 
 
 
 
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,66 +59,47 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
- agent = BasicAgent()
44
  except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
  try:
54
  response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
  print(f"Fetched {len(questions_data)} questions.")
61
  except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
  return f"Error fetching questions: {e}", None
64
  except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
 
72
- # 3. Run your Agent
73
  results_log = []
74
  answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
  if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
  continue
82
  try:
83
  submitted_answer = agent(question_text)
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
 
90
  if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
 
94
- # 4. Prepare Submission
95
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
 
101
  try:
102
  response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
@@ -109,61 +111,33 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
  f"Message: {result_data.get('message', 'No message received.')}"
111
  )
112
- print("Submission successful.")
113
  results_df = pd.DataFrame(results_log)
114
  return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
- try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
  except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
 
143
- # --- Build Gradio Interface using Blocks ---
144
  with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
148
  **Instructions:**
149
 
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
 
154
  ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
 
161
  gr.LoginButton()
162
-
163
  run_button = gr.Button("Run Evaluation & Submit All Answers")
164
 
165
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
 
169
  run_button.click(
@@ -173,24 +147,20 @@ with gr.Blocks() as demo:
173
 
174
  if __name__ == "__main__":
175
  print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
 
180
  if space_host_startup:
181
  print(f"✅ SPACE_HOST found: {space_host_startup}")
182
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
  else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
 
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"✅ SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
 
193
  print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
7
+ import torch
8
 
 
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
+ # --- Advanced GAIA-Ready Agent ---
13
+ class GaiaAgent:
 
14
  def __init__(self):
15
+ print("Initializing GaiaAgent with open-source model...")
16
+
17
+ model_name = "google/flan-t5-large" # Good balance between size and reasoning quality
18
+ auth_token = os.getenv("HF_TOKEN")
19
+
20
+ self.device = 0 if torch.cuda.is_available() else -1
21
+ self.pipe = pipeline(
22
+ "text2text-generation",
23
+ model=model_name,
24
+ tokenizer=model_name,
25
+ token=auth_token,
26
+ device=self.device
27
+ )
28
+ print("Model and tokenizer loaded.")
29
+
30
  def __call__(self, question: str) -> str:
31
+ print(f"Agent received question: {question[:60]}...")
32
+ prompt = (
33
+ f"Answer the following question as accurately as possible.\n"
34
+ f"Question: {question}\n"
35
+ f"Answer:"
36
+ )
37
+ try:
38
+ result = self.pipe(prompt, max_new_tokens=64, clean_up_tokenization_spaces=True)[0]["generated_text"]
39
+ # Ensure clean return without "Answer:" prefix
40
+ answer = result.strip().replace("Answer:", "").strip()
41
+ print(f"Agent returned: {answer}")
42
+ return answer
43
+ except Exception as e:
44
+ print(f"Error during model inference: {e}")
45
+ return f"AGENT ERROR: {e}"
46
+
47
+ # --- Evaluation & Submission Logic ---
48
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
49
+ space_id = os.getenv("SPACE_ID")
50
 
51
  if profile:
52
+ username = f"{profile.username}"
53
  print(f"User logged in: {username}")
54
  else:
55
  print("User not logged in.")
 
59
  questions_url = f"{api_url}/questions"
60
  submit_url = f"{api_url}/submit"
61
 
 
62
  try:
63
+ agent = GaiaAgent()
64
  except Exception as e:
 
65
  return f"Error initializing agent: {e}", None
66
+
67
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
68
  print(agent_code)
69
 
 
 
70
  try:
71
  response = requests.get(questions_url, timeout=15)
72
  response.raise_for_status()
73
  questions_data = response.json()
74
  if not questions_data:
75
+ return "Fetched questions list is empty or invalid format.", None
 
76
  print(f"Fetched {len(questions_data)} questions.")
77
  except requests.exceptions.RequestException as e:
 
78
  return f"Error fetching questions: {e}", None
79
  except requests.exceptions.JSONDecodeError as e:
80
+ return f"Error decoding server response for questions: {e}", None
 
 
 
 
 
81
 
 
82
  results_log = []
83
  answers_payload = []
84
+
85
  for item in questions_data:
86
  task_id = item.get("task_id")
87
  question_text = item.get("question")
88
  if not task_id or question_text is None:
 
89
  continue
90
  try:
91
  submitted_answer = agent(question_text)
92
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
93
  results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
94
  except Exception as e:
95
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
96
 
97
  if not answers_payload:
 
98
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
99
 
 
100
  submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
 
 
 
 
101
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
102
+
103
  try:
104
  response = requests.post(submit_url, json=submission_data, timeout=60)
105
  response.raise_for_status()
 
111
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
112
  f"Message: {result_data.get('message', 'No message received.')}"
113
  )
 
114
  results_df = pd.DataFrame(results_log)
115
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
  except requests.exceptions.RequestException as e:
117
+ return f"Submission Failed: {e}", pd.DataFrame(results_log)
 
 
 
118
  except Exception as e:
119
+ return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)
 
 
 
 
120
 
121
+ # --- Gradio UI ---
122
  with gr.Blocks() as demo:
123
+ gr.Markdown("# GAIA-Level Agent Evaluation Runner")
124
  gr.Markdown(
125
  """
126
  **Instructions:**
127
 
128
+ 1. Modify and extend the agent in the code section.
129
+ 2. Login with your Hugging Face account to submit answers.
130
+ 3. Click the button to run and submit.
131
 
132
  ---
133
+ *This agent uses `google/flan-t5-large` from Hugging Face to answer questions.*
 
 
134
  """
135
  )
136
 
137
  gr.LoginButton()
 
138
  run_button = gr.Button("Run Evaluation & Submit All Answers")
139
 
140
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
141
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
142
 
143
  run_button.click(
 
147
 
148
  if __name__ == "__main__":
149
  print("\n" + "-"*30 + " App Starting " + "-"*30)
 
150
  space_host_startup = os.getenv("SPACE_HOST")
151
+ space_id_startup = os.getenv("SPACE_ID")
152
 
153
  if space_host_startup:
154
  print(f"✅ SPACE_HOST found: {space_host_startup}")
155
  print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
156
  else:
157
+ print("ℹ️ SPACE_HOST not found.")
158
 
159
+ if space_id_startup:
160
  print(f"✅ SPACE_ID found: {space_id_startup}")
161
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
162
  else:
163
+ print("ℹ️ SPACE_ID not found.")
164
 
165
  print("-"*(60 + len(" App Starting ")) + "\n")
166
+ demo.launch(debug=True, share=False)