|
|
|
import os
|
|
import streamlit as st
|
|
from dotenv import load_dotenv
|
|
from langchain.docstore.document import Document
|
|
from langchain_community.retrievers import BM25Retriever
|
|
from langchain.tools import Tool
|
|
from langchain.utilities import SerpAPIWrapper
|
|
from langgraph.graph.message import add_messages
|
|
from langgraph.graph import START, StateGraph
|
|
from langgraph.prebuilt import ToolNode, tools_condition
|
|
from langchain_core.messages import AnyMessage, HumanMessage
|
|
from langchain_groq import ChatGroq
|
|
from typing import TypedDict, Annotated
|
|
import fitz
|
|
|
|
|
|
load_dotenv()
|
|
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
|
groq_api_key = os.getenv("GROQ_API_KEY")
|
|
serpapi_api_key = os.getenv("SERPAPI_API_KEY")
|
|
|
|
|
|
def parse_pdfs(uploaded_files):
|
|
pdf_docs = []
|
|
for uploaded_file in uploaded_files:
|
|
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
|
text = ""
|
|
for page in doc:
|
|
text += page.get_text()
|
|
pdf_docs.append(Document(page_content=text, metadata={"source": uploaded_file.name}))
|
|
return pdf_docs
|
|
|
|
|
|
def build_retriever(all_docs):
|
|
return BM25Retriever.from_documents(all_docs)
|
|
|
|
def extract_text(query: str, retriever):
|
|
results = retriever.invoke(query)
|
|
if results:
|
|
return "\n\n".join([doc.page_content for doc in results[:3]])
|
|
else:
|
|
return "ูู
ูุชู
ุงูุนุซูุฑ ุนูู ู
ุนููู
ุงุช ู
ุทุงุจูุฉ ูู ุงูู
ููุงุช."
|
|
|
|
|
|
st.set_page_config(page_title="NINU Agent", page_icon="๐๏ธ")
|
|
st.title("๐๏ธ NINU - Guest & PDF & Web Assistant")
|
|
|
|
st.markdown("** Hint:** NINU can help summarize lectures, answer questions from PDFs, and search the web interactively.")
|
|
|
|
if "conversation_history" not in st.session_state:
|
|
st.session_state.conversation_history = []
|
|
|
|
query = st.text_area("๐ ุงูุชุจ ุณุคุงูู ุฃู ูู
ู ู
ุฐุงูุฑุชู ููุง:")
|
|
|
|
uploaded_files = st.file_uploader("๐ ุงุฑูุน ู
ููุงุช PDF ููู
ุญุงุถุฑุงุช", type=["pdf"], accept_multiple_files=True)
|
|
|
|
if st.button("Ask NINU") and query:
|
|
|
|
user_docs = parse_pdfs(uploaded_files) if uploaded_files else []
|
|
bm25_retriever = build_retriever(user_docs) if user_docs else None
|
|
|
|
|
|
def pdf_tool_func(q):
|
|
if bm25_retriever:
|
|
return extract_text(q, bm25_retriever)
|
|
else:
|
|
return "ูุง ุชูุฌุฏ ู
ููุงุช PDF ู
ุฑููุนุฉ ููุจุญุซ."
|
|
|
|
NINU_tool = Tool(
|
|
name="NINU_Lec_retriever",
|
|
func=pdf_tool_func,
|
|
description="Retrieves content from uploaded PDFs based on a query."
|
|
)
|
|
|
|
|
|
serpapi = SerpAPIWrapper(serpapi_api_key=serpapi_api_key)
|
|
SerpAPI_tool = Tool(
|
|
name="WebSearch",
|
|
func=serpapi.run,
|
|
description="Searches the web for recent information."
|
|
)
|
|
|
|
|
|
tools = [NINU_tool, SerpAPI_tool]
|
|
|
|
|
|
llm = ChatGroq(model="deepseek-r1-distill-llama-70b", groq_api_key=groq_api_key)
|
|
llm_with_tools = llm.bind_tools(tools)
|
|
|
|
|
|
class AgentState(TypedDict):
|
|
messages: Annotated[list[AnyMessage], add_messages]
|
|
|
|
def assistant(state: AgentState):
|
|
return {
|
|
"messages": [llm_with_tools.invoke(state["messages"])]
|
|
}
|
|
|
|
|
|
builder = StateGraph(AgentState)
|
|
builder.add_node("assistant", assistant)
|
|
builder.add_node("tools", ToolNode(tools))
|
|
builder.add_edge(START, "assistant")
|
|
builder.add_conditional_edges("assistant", tools_condition)
|
|
builder.add_edge("tools", "assistant")
|
|
NINU = builder.compile()
|
|
|
|
|
|
if len(st.session_state.conversation_history) == 0:
|
|
intro_prompt = """
|
|
You are a general AI assistant with access to two tools:
|
|
|
|
1. NINU_Lec_retriever: retrieves content from uploaded PDFs based on a query.
|
|
2. WebSearch: performs web searches to answer questions about current events or general knowledge.
|
|
|
|
Based on the user's query, decide whether to use NINU_Lec_retriever, WebSearch, or both.
|
|
|
|
When answering, report your thoughts and finish your answer with the following template:
|
|
FINAL ANSWER: [YOUR FINAL ANSWER].
|
|
|
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
|
|
|
If you are asked for a number, don't use commas or units (like $, %, etc.) unless specified.
|
|
|
|
If you are asked for a string, avoid articles, abbreviations, and write digits in plain text unless specified.
|
|
"""
|
|
st.session_state.conversation_history.append(HumanMessage(content=intro_prompt))
|
|
|
|
|
|
st.session_state.conversation_history.append(HumanMessage(content=query))
|
|
|
|
|
|
response = NINU.invoke({"messages": st.session_state.conversation_history})
|
|
|
|
|
|
assistant_reply = response["messages"][-1]
|
|
st.session_state.conversation_history.append(assistant_reply)
|
|
|
|
|
|
st.markdown("### NINU's Response:")
|
|
st.write(assistant_reply.content)
|
|
|
|
|
|
with st.expander("๐งพ Show full conversation history"):
|
|
for msg in st.session_state.conversation_history:
|
|
role = "You" if msg.type == "human" else "NINU"
|
|
st.markdown(f"**{role}:** {msg.content}")
|
|
|