Upload 2 files
Browse files
.env
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GROQ_API_KEY="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"
|
2 |
+
LANGFUSE_PUBLIC_KEY="pk-lf-2d11058c-faea-457d-8187-50adb4adf9df"
|
3 |
+
LANGFUSE_PRIVATE_KEY="sk-lf-6238da13-7995-49f6-be87-7a6b0063abf3"
|
4 |
+
HUGGINGFACE_API_TOKEN="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"
|
5 |
+
SERPAPI_API_KEY="46b4f7315c732276e79ac17d4f5881594703fc2b8f9ae267c4763ec5c1d39d0a"
|
6 |
+
TELEGRAM_BOT_TOKEN= "7836025598:AAHIY1azhByyvTnojr3gLC1wmL0TgA-OO7w"
|
7 |
+
|
8 |
+
|
Agent.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.docstore.document import Document
|
6 |
+
from langchain_community.retrievers import BM25Retriever
|
7 |
+
from langchain.tools import Tool
|
8 |
+
from langchain.utilities import SerpAPIWrapper
|
9 |
+
from langgraph.graph.message import add_messages
|
10 |
+
from langgraph.graph import START, StateGraph
|
11 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
12 |
+
from langchain_core.messages import AnyMessage, HumanMessage
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
+
from typing import TypedDict, Annotated
|
15 |
+
import fitz # PyMuPDF
|
16 |
+
|
17 |
+
# Load environment variables
|
18 |
+
load_dotenv()
|
19 |
+
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
20 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
21 |
+
serpapi_api_key = os.getenv("SERPAPI_API_KEY")
|
22 |
+
|
23 |
+
# --- PDF uploader and parser ---
|
24 |
+
def parse_pdfs(uploaded_files):
|
25 |
+
pdf_docs = []
|
26 |
+
for uploaded_file in uploaded_files:
|
27 |
+
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
|
28 |
+
text = ""
|
29 |
+
for page in doc:
|
30 |
+
text += page.get_text()
|
31 |
+
pdf_docs.append(Document(page_content=text, metadata={"source": uploaded_file.name}))
|
32 |
+
return pdf_docs
|
33 |
+
|
34 |
+
# --- Guest info retrieval ---
|
35 |
+
def build_retriever(all_docs):
|
36 |
+
return BM25Retriever.from_documents(all_docs)
|
37 |
+
|
38 |
+
def extract_text(query: str, retriever):
|
39 |
+
results = retriever.invoke(query)
|
40 |
+
if results:
|
41 |
+
return "\n\n".join([doc.page_content for doc in results[:3]])
|
42 |
+
else:
|
43 |
+
return "ูู
ูุชู
ุงูุนุซูุฑ ุนูู ู
ุนููู
ุงุช ู
ุทุงุจูุฉ ูู ุงูู
ููุงุช."
|
44 |
+
|
45 |
+
# --- Streamlit UI ---
|
46 |
+
st.set_page_config(page_title="NINU Agent", page_icon="๐๏ธ")
|
47 |
+
st.title("๐๏ธ NINU - Guest & PDF & Web Assistant")
|
48 |
+
|
49 |
+
st.markdown("** Hint:** NINU can help summarize lectures, answer questions from PDFs, and search the web interactively.")
|
50 |
+
|
51 |
+
if "conversation_history" not in st.session_state:
|
52 |
+
st.session_state.conversation_history = []
|
53 |
+
|
54 |
+
query = st.text_area("๐ ุงูุชุจ ุณุคุงูู ุฃู ูู
ู ู
ุฐุงูุฑุชู ููุง:")
|
55 |
+
|
56 |
+
uploaded_files = st.file_uploader("๐ ุงุฑูุน ู
ููุงุช PDF ููู
ุญุงุถุฑุงุช", type=["pdf"], accept_multiple_files=True)
|
57 |
+
|
58 |
+
if st.button("Ask NINU") and query:
|
59 |
+
# Parse PDFs if uploaded
|
60 |
+
user_docs = parse_pdfs(uploaded_files) if uploaded_files else []
|
61 |
+
bm25_retriever = build_retriever(user_docs) if user_docs else None
|
62 |
+
|
63 |
+
# Tool for PDF retrieval (if PDFs uploaded)
|
64 |
+
def pdf_tool_func(q):
|
65 |
+
if bm25_retriever:
|
66 |
+
return extract_text(q, bm25_retriever)
|
67 |
+
else:
|
68 |
+
return "ูุง ุชูุฌุฏ ู
ููุงุช PDF ู
ุฑููุนุฉ ููุจุญุซ."
|
69 |
+
|
70 |
+
NINU_tool = Tool(
|
71 |
+
name="NINU_Lec_retriever",
|
72 |
+
func=pdf_tool_func,
|
73 |
+
description="Retrieves content from uploaded PDFs based on a query."
|
74 |
+
)
|
75 |
+
|
76 |
+
# Tool for Web search using SerpAPI
|
77 |
+
serpapi = SerpAPIWrapper(serpapi_api_key=serpapi_api_key)
|
78 |
+
SerpAPI_tool = Tool(
|
79 |
+
name="WebSearch",
|
80 |
+
func=serpapi.run,
|
81 |
+
description="Searches the web for recent information."
|
82 |
+
)
|
83 |
+
|
84 |
+
# Combine tools
|
85 |
+
tools = [NINU_tool, SerpAPI_tool]
|
86 |
+
|
87 |
+
# Create LLM and bind tools
|
88 |
+
llm = ChatGroq(model="deepseek-r1-distill-llama-70b", groq_api_key=groq_api_key)
|
89 |
+
llm_with_tools = llm.bind_tools(tools)
|
90 |
+
|
91 |
+
# Define Agent state and assistant function
|
92 |
+
class AgentState(TypedDict):
|
93 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
94 |
+
|
95 |
+
def assistant(state: AgentState):
|
96 |
+
return {
|
97 |
+
"messages": [llm_with_tools.invoke(state["messages"])]
|
98 |
+
}
|
99 |
+
|
100 |
+
# Build the StateGraph agent
|
101 |
+
builder = StateGraph(AgentState)
|
102 |
+
builder.add_node("assistant", assistant)
|
103 |
+
builder.add_node("tools", ToolNode(tools))
|
104 |
+
builder.add_edge(START, "assistant")
|
105 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
106 |
+
builder.add_edge("tools", "assistant")
|
107 |
+
NINU = builder.compile()
|
108 |
+
|
109 |
+
# Add intro prompt if first message
|
110 |
+
if len(st.session_state.conversation_history) == 0:
|
111 |
+
intro_prompt = """
|
112 |
+
You are a general AI assistant with access to two tools:
|
113 |
+
|
114 |
+
1. NINU_Lec_retriever: retrieves content from uploaded PDFs based on a query.
|
115 |
+
2. WebSearch: performs web searches to answer questions about current events or general knowledge.
|
116 |
+
|
117 |
+
Based on the user's query, decide whether to use NINU_Lec_retriever, WebSearch, or both.
|
118 |
+
|
119 |
+
When answering, report your thoughts and finish your answer with the following template:
|
120 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
121 |
+
|
122 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
123 |
+
|
124 |
+
If you are asked for a number, don't use commas or units (like $, %, etc.) unless specified.
|
125 |
+
|
126 |
+
If you are asked for a string, avoid articles, abbreviations, and write digits in plain text unless specified.
|
127 |
+
"""
|
128 |
+
st.session_state.conversation_history.append(HumanMessage(content=intro_prompt))
|
129 |
+
|
130 |
+
# Add user query
|
131 |
+
st.session_state.conversation_history.append(HumanMessage(content=query))
|
132 |
+
|
133 |
+
# Invoke the agent
|
134 |
+
response = NINU.invoke({"messages": st.session_state.conversation_history})
|
135 |
+
|
136 |
+
# Append assistant reply to conversation history
|
137 |
+
assistant_reply = response["messages"][-1]
|
138 |
+
st.session_state.conversation_history.append(assistant_reply)
|
139 |
+
|
140 |
+
# Show assistant reply
|
141 |
+
st.markdown("### NINU's Response:")
|
142 |
+
st.write(assistant_reply.content)
|
143 |
+
|
144 |
+
# Show full conversation history (optional)
|
145 |
+
with st.expander("๐งพ Show full conversation history"):
|
146 |
+
for msg in st.session_state.conversation_history:
|
147 |
+
role = "You" if msg.type == "human" else "NINU"
|
148 |
+
st.markdown(f"**{role}:** {msg.content}")
|