adn
Update app.py
3f04b1c verified
raw
history blame
14.9 kB
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import tensorflow as tf
import numpy as np
import uvicorn
import os
import logging
import pickle
from typing import Dict, Any
from transformers import AutoTokenizer
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configuration
MODEL_PATH = "model.tflite"
TOKENIZER_PATH = "tokenizer"
LABEL_ENCODER_PATH = "label_encoder.pkl"
MAX_LENGTH = 128
# Inisialisasi FastAPI
app = FastAPI(
title="Damkar Classification API (TFLite)",
description="API untuk klasifikasi tipe laporan damkar menggunakan TFLite model",
version="1.0.0"
)
# Global variables
interpreter = None
tokenizer = None
label_encoder = None
input_details = None
output_details = None
@app.on_event("startup")
async def load_model():
"""Load model dan dependencies saat aplikasi startup"""
global interpreter, tokenizer, label_encoder, input_details, output_details
try:
logger.info("Loading TFLite model...")
# Load TFLite model
if not os.path.exists(MODEL_PATH):
raise FileNotFoundError(f"Model file not found: {MODEL_PATH}")
interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
interpreter.allocate_tensors()
# Get input/output details
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
logger.info(f"Model loaded. Input shape: {[detail['shape'] for detail in input_details]}")
# Load tokenizer
logger.info("Loading tokenizer...")
if os.path.exists(TOKENIZER_PATH):
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
else:
# Fallback ke tokenizer online jika tidak ada lokal
logger.warning("Local tokenizer not found, using online tokenizer")
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
# Load label encoder
logger.info("Loading label encoder...")
if os.path.exists(LABEL_ENCODER_PATH):
with open(LABEL_ENCODER_PATH, 'rb') as f:
label_encoder = pickle.load(f)
else:
# Default labels jika tidak ada label encoder
logger.warning("Label encoder not found, using default labels")
label_encoder = create_default_label_encoder()
logger.info("All components loaded successfully!")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise e
def create_default_label_encoder():
"""Create default label encoder jika file tidak ada"""
class DefaultLabelEncoder:
def __init__(self):
# Sesuaikan dengan kategori yang Anda miliki
self.classes_ = [
"Kebakaran",
"Evakuasi/Penyelamatan Hewan",
"Penyelamatan Non Hewan & Bantuan Teknis",
"Lain-lain"
]
def inverse_transform(self, encoded):
return [self.classes_[i] for i in encoded]
return DefaultLabelEncoder()
def predict_tflite(text: str) -> Dict[str, Any]:
"""Fungsi prediksi menggunakan TFLite model"""
global interpreter, tokenizer, label_encoder, input_details, output_details
if not all([interpreter, tokenizer, label_encoder]):
raise HTTPException(status_code=503, detail="Model components not loaded")
try:
# Resize input tensors
interpreter.resize_tensor_input(0, [1, MAX_LENGTH]) # attention_mask
interpreter.resize_tensor_input(1, [1, MAX_LENGTH]) # input_ids
interpreter.resize_tensor_input(2, [1, MAX_LENGTH]) # token_type_ids
interpreter.allocate_tensors()
# Tokenize text
encoded = tokenizer(
[text],
max_length=MAX_LENGTH,
padding='max_length',
truncation=True,
return_tensors='np'
)
# Convert to int32 for TFLite
input_ids = encoded['input_ids'].astype(np.int32)
token_type_ids = encoded['token_type_ids'].astype(np.int32)
attention_mask = encoded['attention_mask'].astype(np.int32)
# Set tensors
interpreter.set_tensor(input_details[0]['index'], attention_mask)
interpreter.set_tensor(input_details[1]['index'], input_ids)
interpreter.set_tensor(input_details[2]['index'], token_type_ids)
# Run inference
interpreter.invoke()
# Get output
output = interpreter.get_tensor(output_details[0]['index'])
# Get predictions
probabilities = tf.nn.softmax(output[0]).numpy()
pred_encoded = np.argmax(output, axis=1)
predicted_label = label_encoder.inverse_transform(pred_encoded)[0]
confidence = float(np.max(probabilities))
return {
"label": predicted_label,
"confidence": confidence,
"probabilities": {
label: float(prob) for label, prob in zip(label_encoder.classes_, probabilities)
}
}
except Exception as e:
logger.error(f"Prediction error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")
# Request/Response models
class InputText(BaseModel):
text: str
class PredictionResponse(BaseModel):
label: str
confidence: float
probabilities: Dict[str, float]
status: str = "success"
# HTML template untuk UI
HTML_TEMPLATE = """
<!DOCTYPE html>
<html>
<head>
<title>Damkar Classification</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: #f5f5f5;
}
.container {
background: white;
padding: 30px;
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
}
h1 {
color: #333;
text-align: center;
margin-bottom: 30px;
}
.form-group {
margin-bottom: 20px;
}
label {
display: block;
margin-bottom: 8px;
font-weight: bold;
color: #555;
}
textarea {
width: 100%;
min-height: 120px;
padding: 12px;
border: 2px solid #ddd;
border-radius: 6px;
font-size: 14px;
resize: vertical;
box-sizing: border-box;
}
textarea:focus {
outline: none;
border-color: #007bff;
}
button {
background-color: #007bff;
color: white;
padding: 12px 30px;
border: none;
border-radius: 6px;
cursor: pointer;
font-size: 16px;
width: 100%;
}
button:hover {
background-color: #0056b3;
}
button:disabled {
background-color: #ccc;
cursor: not-allowed;
}
.result {
margin-top: 20px;
padding: 15px;
border-radius: 6px;
display: none;
}
.result.success {
background-color: #d4edda;
border: 1px solid #c3e6cb;
color: #155724;
}
.result.error {
background-color: #f8d7da;
border: 1px solid #f5c6cb;
color: #721c24;
}
.loading {
text-align: center;
display: none;
}
.prob-item {
display: flex;
justify-content: space-between;
margin: 5px 0;
padding: 5px;
background-color: #f8f9fa;
border-radius: 4px;
}
.examples {
margin-top: 20px;
padding: 15px;
background-color: #f8f9fa;
border-radius: 6px;
}
.example-text {
cursor: pointer;
color: #007bff;
text-decoration: underline;
margin: 5px 0;
}
.example-text:hover {
color: #0056b3;
}
</style>
</head>
<body>
<div class="container">
<h1>🚒 Klasifikasi Laporan Damkar</h1>
<div class="form-group">
<label for="textInput">Masukkan teks laporan:</label>
<textarea id="textInput" placeholder="Contoh: ada kebakaran di gedung perkantoran..."></textarea>
</div>
<button onclick="predict()" id="predictBtn">Prediksi Kategori</button>
<div class="loading" id="loading">
<p>⏳ Sedang memproses...</p>
</div>
<div class="result" id="result"></div>
<div class="examples">
<h3>Contoh Teks:</h3>
<div class="example-text" onclick="setExample('ada kebakaran di gedung perkantoran lantai 5')">
🔥 "ada kebakaran di gedung perkantoran lantai 5"
</div>
<div class="example-text" onclick="setExample('ular masuk ke dalam rumah warga')">
🐍 "ular masuk ke dalam rumah warga"
</div>
<div class="example-text" onclick="setExample('kucing terjebak di atas pohon tinggi')">
🐱 "kucing terjebak di atas pohon tinggi"
</div>
<div class="example-text" onclick="setExample('pohon tumbang menghalangi jalan raya')">
🌳 "pohon tumbang menghalangi jalan raya"
</div>
</div>
</div>
<script>
function setExample(text) {
document.getElementById('textInput').value = text;
}
async function predict() {
const text = document.getElementById('textInput').value.trim();
const resultDiv = document.getElementById('result');
const loadingDiv = document.getElementById('loading');
const predictBtn = document.getElementById('predictBtn');
if (!text) {
showResult('error', 'Mohon masukkan teks untuk diprediksi.');
return;
}
// Show loading
loadingDiv.style.display = 'block';
resultDiv.style.display = 'none';
predictBtn.disabled = true;
try {
const response = await fetch('/predict', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify({ text: text })
});
const data = await response.json();
if (response.ok) {
let resultHTML = `
<h3>Hasil Prediksi:</h3>
<p><strong>Kategori:</strong> ${data.label}</p>
<p><strong>Confidence:</strong> ${(data.confidence * 100).toFixed(2)}%</p>
<h4>Detail Probabilitas:</h4>
`;
for (const [label, prob] of Object.entries(data.probabilities)) {
const percentage = (prob * 100).toFixed(2);
resultHTML += `
<div class="prob-item">
<span>${label}</span>
<span>${percentage}%</span>
</div>
`;
}
showResult('success', resultHTML);
} else {
showResult('error', `Error: ${data.detail || 'Unknown error'}`);
}
} catch (error) {
showResult('error', `Network error: ${error.message}`);
} finally {
loadingDiv.style.display = 'none';
predictBtn.disabled = false;
}
}
function showResult(type, content) {
const resultDiv = document.getElementById('result');
resultDiv.className = `result ${type}`;
resultDiv.innerHTML = content;
resultDiv.style.display = 'block';
}
// Allow Enter key to submit
document.getElementById('textInput').addEventListener('keypress', function(e) {
if (e.key === 'Enter' && e.ctrlKey) {
predict();
}
});
</script>
</body>
</html>
"""
# Routes
@app.get("/", response_class=HTMLResponse)
def read_root():
"""UI Interface untuk testing"""
return HTML_TEMPLATE
@app.get("/health")
def health_check():
"""Health check endpoint"""
global interpreter, tokenizer, label_encoder
if not all([interpreter, tokenizer, label_encoder]):
return {"status": "unhealthy", "message": "Model components not loaded"}
return {
"status": "healthy",
"message": "TFLite model is ready",
"model_info": {
"input_shapes": [detail['shape'] for detail in input_details],
"output_shape": output_details[0]['shape'] if output_details else None,
"max_length": MAX_LENGTH
}
}
@app.post("/predict", response_model=PredictionResponse)
def predict(input: InputText):
"""API endpoint untuk prediksi"""
# Validasi input
if not input.text or input.text.strip() == "":
raise HTTPException(status_code=400, detail="Text input cannot be empty")
try:
# Lakukan prediksi
result = predict_tflite(input.text)
return PredictionResponse(
label=result["label"],
confidence=result["confidence"],
probabilities=result["probabilities"]
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.get("/test")
def test_endpoint():
"""Test endpoint"""
return {
"message": "TFLite API is working!",
"status": "ok",
"endpoints": {
"ui": "/",
"predict": "/predict",
"health": "/health",
"docs": "/docs"
}
}
# Jalankan lokal (untuk development)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)