File size: 14,916 Bytes
a254043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f04b1c
18718be
 
a254043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
import tensorflow as tf
import numpy as np
import uvicorn
import os
import logging
import pickle
from typing import Dict, Any
from transformers import AutoTokenizer

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration
MODEL_PATH = "model.tflite"
TOKENIZER_PATH = "tokenizer" 
LABEL_ENCODER_PATH = "label_encoder.pkl"
MAX_LENGTH = 128

# Inisialisasi FastAPI
app = FastAPI(
    title="Damkar Classification API (TFLite)",
    description="API untuk klasifikasi tipe laporan damkar menggunakan TFLite model",
    version="1.0.0"
)

# Global variables
interpreter = None
tokenizer = None
label_encoder = None
input_details = None
output_details = None

@app.on_event("startup")
async def load_model():
    """Load model dan dependencies saat aplikasi startup"""
    global interpreter, tokenizer, label_encoder, input_details, output_details
    
    try:
        logger.info("Loading TFLite model...")
        
        # Load TFLite model
        if not os.path.exists(MODEL_PATH):
            raise FileNotFoundError(f"Model file not found: {MODEL_PATH}")
            
        interpreter = tf.lite.Interpreter(model_path=MODEL_PATH)
        interpreter.allocate_tensors()
        
        # Get input/output details
        input_details = interpreter.get_input_details()
        output_details = interpreter.get_output_details()
        
        logger.info(f"Model loaded. Input shape: {[detail['shape'] for detail in input_details]}")
        
        # Load tokenizer
        logger.info("Loading tokenizer...")
        if os.path.exists(TOKENIZER_PATH):
            tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
        else:
            # Fallback ke tokenizer online jika tidak ada lokal
            logger.warning("Local tokenizer not found, using online tokenizer")
            tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
        
        # Load label encoder
        logger.info("Loading label encoder...")
        if os.path.exists(LABEL_ENCODER_PATH):
            with open(LABEL_ENCODER_PATH, 'rb') as f:
                label_encoder = pickle.load(f)
        else:
            # Default labels jika tidak ada label encoder
            logger.warning("Label encoder not found, using default labels")
            label_encoder = create_default_label_encoder()
        
        logger.info("All components loaded successfully!")
        
    except Exception as e:
        logger.error(f"Error loading model: {str(e)}")
        raise e

def create_default_label_encoder():
    """Create default label encoder jika file tidak ada"""
    class DefaultLabelEncoder:
        def __init__(self):
            # Sesuaikan dengan kategori yang Anda miliki
            self.classes_ = [
                "Kebakaran",
                "Evakuasi/Penyelamatan Hewan", 
                "Penyelamatan Non Hewan & Bantuan Teknis",
                "Lain-lain"
            ]
        
        def inverse_transform(self, encoded):
            return [self.classes_[i] for i in encoded]
    
    return DefaultLabelEncoder()

def predict_tflite(text: str) -> Dict[str, Any]:
    """Fungsi prediksi menggunakan TFLite model"""
    global interpreter, tokenizer, label_encoder, input_details, output_details
    
    if not all([interpreter, tokenizer, label_encoder]):
        raise HTTPException(status_code=503, detail="Model components not loaded")
    
    try:
        # Resize input tensors
        interpreter.resize_tensor_input(0, [1, MAX_LENGTH])  # attention_mask
        interpreter.resize_tensor_input(1, [1, MAX_LENGTH])  # input_ids  
        interpreter.resize_tensor_input(2, [1, MAX_LENGTH])  # token_type_ids
        interpreter.allocate_tensors()
        
        # Tokenize text
        encoded = tokenizer(
            [text],
            max_length=MAX_LENGTH,
            padding='max_length',
            truncation=True,
            return_tensors='np'
        )
        
        # Convert to int32 for TFLite
        input_ids = encoded['input_ids'].astype(np.int32)
        token_type_ids = encoded['token_type_ids'].astype(np.int32)
        attention_mask = encoded['attention_mask'].astype(np.int32)
        
        # Set tensors
        interpreter.set_tensor(input_details[0]['index'], attention_mask)
        interpreter.set_tensor(input_details[1]['index'], input_ids)
        interpreter.set_tensor(input_details[2]['index'], token_type_ids)
        
        # Run inference
        interpreter.invoke()
        
        # Get output
        output = interpreter.get_tensor(output_details[0]['index'])
        
        # Get predictions
        probabilities = tf.nn.softmax(output[0]).numpy()
        pred_encoded = np.argmax(output, axis=1)
        predicted_label = label_encoder.inverse_transform(pred_encoded)[0]
        confidence = float(np.max(probabilities))
        
        return {
            "label": predicted_label,
            "confidence": confidence,
            "probabilities": {
                label: float(prob) for label, prob in zip(label_encoder.classes_, probabilities)
            }
        }
        
    except Exception as e:
        logger.error(f"Prediction error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Prediction failed: {str(e)}")

# Request/Response models
class InputText(BaseModel):
    text: str

class PredictionResponse(BaseModel):
    label: str
    confidence: float
    probabilities: Dict[str, float]
    status: str = "success"

# HTML template untuk UI
HTML_TEMPLATE = """
<!DOCTYPE html>
<html>
<head>
    <title>Damkar Classification</title>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <style>
        body {
            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
            max-width: 800px;
            margin: 0 auto;
            padding: 20px;
            background-color: #f5f5f5;
        }
        .container {
            background: white;
            padding: 30px;
            border-radius: 10px;
            box-shadow: 0 2px 10px rgba(0,0,0,0.1);
        }
        h1 {
            color: #333;
            text-align: center;
            margin-bottom: 30px;
        }
        .form-group {
            margin-bottom: 20px;
        }
        label {
            display: block;
            margin-bottom: 8px;
            font-weight: bold;
            color: #555;
        }
        textarea {
            width: 100%;
            min-height: 120px;
            padding: 12px;
            border: 2px solid #ddd;
            border-radius: 6px;
            font-size: 14px;
            resize: vertical;
            box-sizing: border-box;
        }
        textarea:focus {
            outline: none;
            border-color: #007bff;
        }
        button {
            background-color: #007bff;
            color: white;
            padding: 12px 30px;
            border: none;
            border-radius: 6px;
            cursor: pointer;
            font-size: 16px;
            width: 100%;
        }
        button:hover {
            background-color: #0056b3;
        }
        button:disabled {
            background-color: #ccc;
            cursor: not-allowed;
        }
        .result {
            margin-top: 20px;
            padding: 15px;
            border-radius: 6px;
            display: none;
        }
        .result.success {
            background-color: #d4edda;
            border: 1px solid #c3e6cb;
            color: #155724;
        }
        .result.error {
            background-color: #f8d7da;
            border: 1px solid #f5c6cb;
            color: #721c24;
        }
        .loading {
            text-align: center;
            display: none;
        }
        .prob-item {
            display: flex;
            justify-content: space-between;
            margin: 5px 0;
            padding: 5px;
            background-color: #f8f9fa;
            border-radius: 4px;
        }
        .examples {
            margin-top: 20px;
            padding: 15px;
            background-color: #f8f9fa;
            border-radius: 6px;
        }
        .example-text {
            cursor: pointer;
            color: #007bff;
            text-decoration: underline;
            margin: 5px 0;
        }
        .example-text:hover {
            color: #0056b3;
        }
    </style>
</head>
<body>
    <div class="container">
        <h1>πŸš’ Klasifikasi Laporan Damkar</h1>
        
        <div class="form-group">
            <label for="textInput">Masukkan teks laporan:</label>
            <textarea id="textInput" placeholder="Contoh: ada kebakaran di gedung perkantoran..."></textarea>
        </div>
        
        <button onclick="predict()" id="predictBtn">Prediksi Kategori</button>
        
        <div class="loading" id="loading">
            <p>⏳ Sedang memproses...</p>
        </div>
        
        <div class="result" id="result"></div>
        
        <div class="examples">
            <h3>Contoh Teks:</h3>
            <div class="example-text" onclick="setExample('ada kebakaran di gedung perkantoran lantai 5')">
                πŸ”₯ "ada kebakaran di gedung perkantoran lantai 5"
            </div>
            <div class="example-text" onclick="setExample('ular masuk ke dalam rumah warga')">
                🐍 "ular masuk ke dalam rumah warga"
            </div>
            <div class="example-text" onclick="setExample('kucing terjebak di atas pohon tinggi')">
                🐱 "kucing terjebak di atas pohon tinggi"
            </div>
            <div class="example-text" onclick="setExample('pohon tumbang menghalangi jalan raya')">
                🌳 "pohon tumbang menghalangi jalan raya"
            </div>
        </div>
    </div>

    <script>
        function setExample(text) {
            document.getElementById('textInput').value = text;
        }
        
        async function predict() {
            const text = document.getElementById('textInput').value.trim();
            const resultDiv = document.getElementById('result');
            const loadingDiv = document.getElementById('loading');
            const predictBtn = document.getElementById('predictBtn');
            
            if (!text) {
                showResult('error', 'Mohon masukkan teks untuk diprediksi.');
                return;
            }
            
            // Show loading
            loadingDiv.style.display = 'block';
            resultDiv.style.display = 'none';
            predictBtn.disabled = true;
            
            try {
                const response = await fetch('/predict', {
                    method: 'POST',
                    headers: {
                        'Content-Type': 'application/json',
                    },
                    body: JSON.stringify({ text: text })
                });
                
                const data = await response.json();
                
                if (response.ok) {
                    let resultHTML = `
                        <h3>Hasil Prediksi:</h3>
                        <p><strong>Kategori:</strong> ${data.label}</p>
                        <p><strong>Confidence:</strong> ${(data.confidence * 100).toFixed(2)}%</p>
                        <h4>Detail Probabilitas:</h4>
                    `;
                    
                    for (const [label, prob] of Object.entries(data.probabilities)) {
                        const percentage = (prob * 100).toFixed(2);
                        resultHTML += `
                            <div class="prob-item">
                                <span>${label}</span>
                                <span>${percentage}%</span>
                            </div>
                        `;
                    }
                    
                    showResult('success', resultHTML);
                } else {
                    showResult('error', `Error: ${data.detail || 'Unknown error'}`);
                }
            } catch (error) {
                showResult('error', `Network error: ${error.message}`);
            } finally {
                loadingDiv.style.display = 'none';
                predictBtn.disabled = false;
            }
        }
        
        function showResult(type, content) {
            const resultDiv = document.getElementById('result');
            resultDiv.className = `result ${type}`;
            resultDiv.innerHTML = content;
            resultDiv.style.display = 'block';
        }
        
        // Allow Enter key to submit
        document.getElementById('textInput').addEventListener('keypress', function(e) {
            if (e.key === 'Enter' && e.ctrlKey) {
                predict();
            }
        });
    </script>
</body>
</html>
"""

# Routes
@app.get("/", response_class=HTMLResponse)
def read_root():
    """UI Interface untuk testing"""
    return HTML_TEMPLATE

@app.get("/health")
def health_check():
    """Health check endpoint"""
    global interpreter, tokenizer, label_encoder
    
    if not all([interpreter, tokenizer, label_encoder]):
        return {"status": "unhealthy", "message": "Model components not loaded"}
    
    return {
        "status": "healthy", 
        "message": "TFLite model is ready",
        "model_info": {
            "input_shapes": [detail['shape'] for detail in input_details],
            "output_shape": output_details[0]['shape'] if output_details else None,
            "max_length": MAX_LENGTH
        }
    }

@app.post("/predict", response_model=PredictionResponse)
def predict(input: InputText):
    """API endpoint untuk prediksi"""
    
    # Validasi input
    if not input.text or input.text.strip() == "":
        raise HTTPException(status_code=400, detail="Text input cannot be empty")
    
    try:
        # Lakukan prediksi
        result = predict_tflite(input.text)
        
        return PredictionResponse(
            label=result["label"],
            confidence=result["confidence"],
            probabilities=result["probabilities"]
        )
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Unexpected error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

@app.get("/test")
def test_endpoint():
    """Test endpoint"""
    return {
        "message": "TFLite API is working!",
        "status": "ok",
        "endpoints": {
            "ui": "/",
            "predict": "/predict",
            "health": "/health",
            "docs": "/docs"
        }
    }

# Jalankan lokal (untuk development)
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)