Spaces:
Runtime error
Runtime error
""" | |
apply_nms.py: Wrapper for nms.py | |
Authors : svp | |
""" | |
import numpy as np | |
''' | |
nms.py: CPU implementation of non maximal supression modified from Ross's code. | |
Authors : svp | |
Modified from https://github.com/rbgirshick/fast-rcnn/blob/master/lib/utils/nms.py | |
to accommodate a corner case which handles one box lying completely inside another. | |
''' | |
def nms(dets, thresh): | |
x1 = dets[:, 0] | |
y1 = dets[:, 1] | |
x2 = dets[:, 2] | |
y2 = dets[:, 3] | |
scores = dets[:, 4] | |
areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
order = scores.argsort()[::-1] | |
keep = [] | |
while order.size > 0: | |
i = order[0] | |
keep.append(i) | |
xx1 = np.maximum(x1[i], x1[order[1:]]) | |
yy1 = np.maximum(y1[i], y1[order[1:]]) | |
xx2 = np.minimum(x2[i], x2[order[1:]]) | |
yy2 = np.minimum(y2[i], y2[order[1:]]) | |
w = np.maximum(0.0, xx2 - xx1 + 1) | |
h = np.maximum(0.0, yy2 - yy1 + 1) | |
inter = w * h | |
remove_index_1 = np.where(areas[i] == inter) | |
remove_index_2 = np.where(areas[order[1:]] == inter) | |
ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
ovr[remove_index_1] = 1.0 | |
ovr[remove_index_2] = 1.0 | |
inds = np.where(ovr <= thresh)[0] | |
order = order[inds + 1] | |
return keep | |
''' | |
Extracts confidence map and box map from N (N=4 here) | |
channel input. | |
Parameters: | |
----------- | |
confidence_map - (list) list of confidences for N channels | |
hmap - (list) list of box values for N channels | |
Returns | |
------- | |
nms_conf_map - (HXW) single channel confidence score map | |
nms_conf_box - (HXW) single channel box map. | |
''' | |
def extract_conf_points(confidence_map, hmap): | |
nms_conf_map = np.zeros_like(confidence_map[0]) | |
nms_conf_box = np.zeros_like(confidence_map[0]) | |
idx_1 = np.where(np.logical_and(confidence_map[0] > 0, confidence_map[1] <= 0)) | |
idx_2 = np.where(np.logical_and(confidence_map[0] <= 0, confidence_map[1] > 0)) | |
idx_common = np.where(np.logical_and(confidence_map[0] > 0, confidence_map[1] > 0)) | |
nms_conf_map[idx_1] = confidence_map[0][idx_1] | |
nms_conf_map[idx_2] = confidence_map[1][idx_2] | |
nms_conf_box[idx_1] = hmap[0][idx_1] | |
nms_conf_box[idx_2] = hmap[1][idx_2] | |
for ii in range(len(idx_common[0])): | |
x, y = idx_common[0][ii], idx_common[1][ii] | |
if confidence_map[0][x, y] > confidence_map[1][x, y]: | |
nms_conf_map[x, y] = confidence_map[0][x, y] | |
nms_conf_box[x, y] = hmap[0][x, y] | |
else: | |
nms_conf_map[x, y] = confidence_map[1][x, y] | |
nms_conf_box[x, y] = hmap[1][x, y] | |
assert (np.sum(nms_conf_map > 0) == len(idx_1[0]) + len(idx_2[0]) + len(idx_common[0])) | |
return nms_conf_map, nms_conf_box | |
''' | |
Wrapper function to perform NMS | |
Parameters: | |
----------- | |
confidence_map - (list) list of confidences for N channels | |
hmap - (list) list of box values for N channels | |
wmap - (list) list of box values for N channels | |
dotmap_pred_downscale -(int) prediction scale | |
thresh - (float) Threshold for NMS. | |
Returns | |
------- | |
x, y - (list) list of x-coordinates and y-coordinates to keep | |
after NMS. | |
h, w - (list) list of height and width of the corresponding x, y | |
points. | |
scores - (list) list of confidence for h and w at (x, y) point. | |
''' | |
def apply_nms(confidence_map, hmap, wmap, dotmap_pred_downscale=2, thresh=0.3): | |
nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[0], confidence_map[1]], [hmap[0], hmap[1]]) | |
nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[2], nms_conf_map], [hmap[2], nms_conf_box]) | |
nms_conf_map, nms_conf_box = extract_conf_points([confidence_map[3], nms_conf_map], [hmap[3], nms_conf_box]) | |
confidence_map = nms_conf_map | |
hmap = nms_conf_box | |
wmap = nms_conf_box | |
confidence_map = np.squeeze(confidence_map) | |
hmap = np.squeeze(hmap) | |
wmap = np.squeeze(wmap) | |
dets_idx = np.where(confidence_map > 0) | |
y, x = dets_idx[-2], dets_idx[-1] | |
h, w = hmap[dets_idx], wmap[dets_idx] | |
x1 = x - w / 2 | |
x2 = x + w / 2 | |
y1 = y - h / 2 | |
y2 = y + h / 2 | |
scores = confidence_map[dets_idx] | |
dets = np.stack([np.array(x1), np.array(y1), np.array(x2), np.array(y2), np.array(scores)], axis=1) | |
# List of indices to keep | |
keep = nms(dets, thresh) | |
y, x = dets_idx[-2], dets_idx[-1] | |
h, w = hmap[dets_idx], wmap[dets_idx] | |
x = x[keep] | |
y = y[keep] | |
h = h[keep] | |
w = w[keep] | |
scores = scores[keep] | |
return x, y, h, w, scores | |