SpatialTracker2 / models /moge /utils /geometry_torch.py
xiaoyuxi
gradio_app
a51c6d2
from typing import *
import math
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d
from .tools import timeit
from .geometry_numpy import solve_optimal_focal_shift, solve_optimal_shift
def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.mean(dim=dim, keepdim=keepdim)
else:
w = w.to(x.dtype)
return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps)
def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal()
def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).log().mean(dim=dim).exp()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp()
def normalized_view_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor:
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
if aspect_ratio is None:
aspect_ratio = width / height
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5
u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device)
v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device)
u, v = torch.meshgrid(u, v, indexing='xy')
uv = torch.stack([u, v], dim=-1)
return uv
def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor:
kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2))
kernel = kernel / kernel.sum()
kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size)
input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate')
input = F.conv2d(input, kernel, groups=input.shape[1])
return input
def focal_to_fov(focal: torch.Tensor):
return 2 * torch.atan(0.5 / focal)
def fov_to_focal(fov: torch.Tensor):
return 0.5 / torch.tan(fov / 2)
def angle_diff_vec3(v1: torch.Tensor, v2: torch.Tensor, eps: float = 1e-12):
return torch.atan2(torch.cross(v1, v2, dim=-1).norm(dim=-1) + eps, (v1 * v2).sum(dim=-1))
def intrinsics_to_fov(intrinsics: torch.Tensor):
"""
Returns field of view in radians from normalized intrinsics matrix.
### Parameters:
- intrinsics: torch.Tensor of shape (..., 3, 3)
### Returns:
- fov_x: torch.Tensor of shape (...)
- fov_y: torch.Tensor of shape (...)
"""
focal_x = intrinsics[..., 0, 0]
focal_y = intrinsics[..., 1, 1]
return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y)
def point_map_to_depth_legacy(points: torch.Tensor):
height, width = points.shape[-3:-1]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
# Solve least squares problem
b = (uv * points[..., 2:]).flatten(-3, -1) # (..., H * W * 2)
A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2) # (..., H * W * 2, 2)
M = A.transpose(-2, -1) @ A
solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1)
focal, shift = solution.unbind(-1)
depth = points[..., 2] + shift[..., None, None]
fov_x = torch.atan(width / diagonal / focal) * 2
fov_y = torch.atan(height / diagonal / focal) * 2
return depth, fov_x, fov_y, shift
def view_plane_uv_to_focal(uv: torch.Tensor):
normed_uv = normalized_view_plane_uv(width=uv.shape[-2], height=uv.shape[-3], device=uv.device, dtype=uv.dtype)
focal = (uv * normed_uv).sum() / uv.square().sum().add(1e-12)
return focal
def recover_focal_shift(points: torch.Tensor, mask: torch.Tensor = None, focal: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)):
"""
Recover the depth map and FoV from a point map with unknown z shift and focal.
Note that it assumes:
- the optical center is at the center of the map
- the map is undistorted
- the map is isometric in the x and y directions
### Parameters:
- `points: torch.Tensor` of shape (..., H, W, 3)
- `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps.
### Returns:
- `focal`: torch.Tensor of shape (...) the estimated focal length, relative to the half diagonal of the map
- `shift`: torch.Tensor of shape (...) Z-axis shift to translate the point map to camera space
"""
shape = points.shape
height, width = points.shape[-3], points.shape[-2]
diagonal = (height ** 2 + width ** 2) ** 0.5
points = points.reshape(-1, *shape[-3:])
mask = None if mask is None else mask.reshape(-1, *shape[-3:-1])
focal = focal.reshape(-1) if focal is not None else None
uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1)
uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0)
mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0
uv_lr_np = uv_lr.cpu().numpy()
points_lr_np = points_lr.detach().cpu().numpy()
focal_np = focal.cpu().numpy() if focal is not None else None
mask_lr_np = None if mask is None else mask_lr.cpu().numpy()
optim_shift, optim_focal = [], []
for i in range(points.shape[0]):
points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]]
uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]]
if uv_lr_i_np.shape[0] < 2:
optim_focal.append(1)
optim_shift.append(0)
continue
if focal is None:
optim_shift_i, optim_focal_i = solve_optimal_focal_shift(uv_lr_i_np, points_lr_i_np)
optim_focal.append(float(optim_focal_i))
else:
optim_shift_i = solve_optimal_shift(uv_lr_i_np, points_lr_i_np, focal_np[i])
optim_shift.append(float(optim_shift_i))
optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype).reshape(shape[:-3])
if focal is None:
optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype).reshape(shape[:-3])
else:
optim_focal = focal.reshape(shape[:-3])
return optim_focal, optim_shift
def mask_aware_nearest_resize(
inputs: Union[torch.Tensor, Sequence[torch.Tensor], None],
mask: torch.BoolTensor,
size: Tuple[int, int],
return_index: bool = False
) -> Tuple[Union[torch.Tensor, Sequence[torch.Tensor], None], torch.BoolTensor, Tuple[torch.LongTensor, ...]]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...).
- `mask`: input 2D mask of shape (..., H, W)
- `size`: target size (target_width, target_height)
### Returns
- `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...).
- `resized_mask`: mask of the resized map of shape (..., target_height, target_width)
- `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension, .
"""
height, width = mask.shape[-2:]
target_width, target_height = size
device = mask.device
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
# Window the original mask and uv
uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device)
indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width)
padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1))
windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1))
windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1))
# Gather the target pixels's local window
target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device)
target_lefttop = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device)
target_window = torch.round(target_lefttop).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device)
target_window_uv = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
target_window_indices = target_window_indices.expand_as(target_window_mask)
# Compute nearest neighbor in the local window for each pixel
dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf) # (..., target_height, tgt_width, filter_size)
nearest = torch.argmin(dist, dim=-1, keepdim=True) # (..., target_height, tgt_width, 1)
nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1) # (..., target_height, tgt_width)
target_mask = torch.any(target_window_mask, dim=-1)
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])]
index = (*batch_indices, nearest_i, nearest_j)
if inputs is None:
outputs = None
elif isinstance(inputs, torch.Tensor):
outputs = inputs[index]
elif isinstance(inputs, Sequence):
outputs = tuple(x[index] for x in inputs)
else:
raise ValueError(f'Invalid input type: {type(inputs)}')
if return_index:
return outputs, target_mask, index
else:
return outputs, target_mask
def theshold_depth_change(depth: torch.Tensor, mask: torch.Tensor, pooler: Literal['min', 'max'], rtol: float = 0.2, kernel_size: int = 3):
*batch_shape, height, width = depth.shape
depth = depth.reshape(-1, 1, height, width)
mask = mask.reshape(-1, 1, height, width)
if pooler =='max':
pooled_depth = F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2)
output_mask = pooled_depth > depth * (1 + rtol)
elif pooler =='min':
pooled_depth = -F.max_pool2d(-torch.where(mask, depth, torch.inf), kernel_size, stride=1, padding=kernel_size // 2)
output_mask = pooled_depth < depth * (1 - rtol)
else:
raise ValueError(f'Unsupported pooler: {pooler}')
output_mask = output_mask.reshape(*batch_shape, height, width)
return output_mask
def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1):
device, dtype = depth.device, depth.dtype
disp = torch.where(mask, 1 / depth, 0)
disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0)
mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False)
disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2) # [..., H, W, kernel_size ** 2]
mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2) # [..., H, W, kernel_size ** 2]
x = torch.linspace(-kernel_size // 2, kernel_size // 2, kernel_size, device=device, dtype=dtype)
A = torch.stack([*torch.meshgrid(x, x, indexing='xy'), torch.ones((kernel_size, kernel_size), device=device, dtype=dtype)], dim=-1).reshape(kernel_size ** 2, 3) # [kernel_size ** 2, 3]
A = mask_window[..., None] * A
I = torch.eye(3, device=device, dtype=dtype)
affine_disp_window = (disp_window[..., None, :] @ A @ torch.inverse(A.mT @ A + 1e-5 * I) @ A.mT).clamp_min(1e-12)[..., 0, :] # [..., H, W, kernel_size ** 2]
diff = torch.where(mask_window, torch.maximum(affine_disp_window, disp_window) / torch.minimum(affine_disp_window, disp_window) - 1, 0)
edge_mask = mask & (diff > tol).any(dim=-1)
disp_mean = weighted_mean(disp_window, mask_window, dim=-1)
fg_edge_mask = edge_mask & (disp > disp_mean)
# fg_edge_mask = edge_mask & theshold_depth_change(depth, mask, pooler='max', rtol=tol, kernel_size=kernel_size)
bg_edge_mask = edge_mask & ~fg_edge_mask
return fg_edge_mask, bg_edge_mask
def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1):
device, dtype = depth.device, depth.dtype
disp = torch.where(mask, 1 / depth, 0)
disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0)
mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False)
disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)) # [..., H, W, kernel_size ** 2]
mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)) # [..., H, W, kernel_size ** 2]
disp_mean = weighted_mean(disp_window, mask_window, dim=(-2, -1))
fg_edge_mask = mask & (disp / disp_mean > 1 + tol)
bg_edge_mask = mask & (disp_mean / disp > 1 + tol)
fg_edge_mask = fg_edge_mask & F.max_pool2d(bg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool()
bg_edge_mask = bg_edge_mask & F.max_pool2d(fg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool()
return fg_edge_mask, bg_edge_mask
def dilate_with_mask(input: torch.Tensor, mask: torch.BoolTensor, filter: Literal['min', 'max', 'mean', 'median'] = 'mean', iterations: int = 1) -> torch.Tensor:
kernel = torch.tensor([[False, True, False], [True, True, True], [False, True, False]], device=input.device, dtype=torch.bool)
for _ in range(iterations):
input_window = utils3d.torch.sliding_window_2d(F.pad(input, (1, 1, 1, 1), mode='constant', value=0), window_size=3, stride=1, dim=(-2, -1))
mask_window = kernel & utils3d.torch.sliding_window_2d(F.pad(mask, (1, 1, 1, 1), mode='constant', value=False), window_size=3, stride=1, dim=(-2, -1))
if filter =='min':
input = torch.where(mask, input, torch.where(mask_window, input_window, torch.inf).min(dim=(-2, -1)).values)
elif filter =='max':
input = torch.where(mask, input, torch.where(mask_window, input_window, -torch.inf).max(dim=(-2, -1)).values)
elif filter == 'mean':
input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).nanmean(dim=(-2, -1)))
elif filter =='median':
input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).flatten(-2).nanmedian(dim=-1).values)
mask = mask_window.any(dim=(-2, -1))
return input, mask
def refine_depth_with_normal(depth: torch.Tensor, normal: torch.Tensor, intrinsics: torch.Tensor, iterations: int = 10, damp: float = 1e-3, eps: float = 1e-12, kernel_size: int = 5) -> torch.Tensor:
device, dtype = depth.device, depth.dtype
height, width = depth.shape[-2:]
radius = kernel_size // 2
duv = torch.stack(torch.meshgrid(torch.linspace(-radius / width, radius / width, kernel_size, device=device, dtype=dtype), torch.linspace(-radius / height, radius / height, kernel_size, device=device, dtype=dtype), indexing='xy'), dim=-1).to(dtype=dtype, device=device)
log_depth = depth.clamp_min_(eps).log()
log_depth_diff = utils3d.torch.sliding_window_2d(log_depth, window_size=kernel_size, stride=1, dim=(-2, -1)) - log_depth[..., radius:-radius, radius:-radius, None, None]
weight = torch.exp(-(log_depth_diff / duv.norm(dim=-1).clamp_min_(eps) / 10).square())
tot_weight = weight.sum(dim=(-2, -1)).clamp_min_(eps)
uv = utils3d.torch.image_uv(height=height, width=width, device=device, dtype=dtype)
K_inv = torch.inverse(intrinsics)
grad = -(normal[..., None, :2] @ K_inv[..., None, None, :2, :2]).squeeze(-2) \
/ (normal[..., None, 2:] + normal[..., None, :2] @ (K_inv[..., None, None, :2, :2] @ uv[..., :, None] + K_inv[..., None, None, :2, 2:])).squeeze(-2)
laplacian = (weight * ((utils3d.torch.sliding_window_2d(grad, window_size=kernel_size, stride=1, dim=(-3, -2)) + grad[..., radius:-radius, radius:-radius, :, None, None]) * (duv.permute(2, 0, 1) / 2)).sum(dim=-3)).sum(dim=(-2, -1))
laplacian = laplacian.clamp(-0.1, 0.1)
log_depth_refine = log_depth.clone()
for _ in range(iterations):
log_depth_refine[..., radius:-radius, radius:-radius] = 0.1 * log_depth_refine[..., radius:-radius, radius:-radius] + 0.9 * (damp * log_depth[..., radius:-radius, radius:-radius] - laplacian + (weight * utils3d.torch.sliding_window_2d(log_depth_refine, window_size=kernel_size, stride=1, dim=(-2, -1))).sum(dim=(-2, -1))) / (tot_weight + damp)
depth_refine = log_depth_refine.exp()
return depth_refine