File size: 19,873 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from typing import *
import math
from collections import namedtuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d

from .tools import timeit
from .geometry_numpy import solve_optimal_focal_shift, solve_optimal_shift


def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
    if w is None:
        return x.mean(dim=dim, keepdim=keepdim)
    else:
        w = w.to(x.dtype)
        return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps)


def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
    if w is None:
        return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal()
    else:
        w = w.to(x.dtype)
        return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal()


def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
    if w is None:
        return x.add(eps).log().mean(dim=dim).exp()
    else:
        w = w.to(x.dtype)
        return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp()


def normalized_view_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor:
    "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
    if aspect_ratio is None:
        aspect_ratio = width / height
    
    span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
    span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5

    u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device)
    v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device)
    u, v = torch.meshgrid(u, v, indexing='xy')
    uv = torch.stack([u, v], dim=-1)
    return uv


def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor:
    kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2))
    kernel = kernel / kernel.sum()
    kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size)
    input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate')
    input = F.conv2d(input, kernel, groups=input.shape[1])
    return input


def focal_to_fov(focal: torch.Tensor):
    return 2 * torch.atan(0.5 / focal)


def fov_to_focal(fov: torch.Tensor):
    return 0.5 / torch.tan(fov / 2)


def angle_diff_vec3(v1: torch.Tensor, v2: torch.Tensor, eps: float = 1e-12):
    return torch.atan2(torch.cross(v1, v2, dim=-1).norm(dim=-1) + eps, (v1 * v2).sum(dim=-1))

def intrinsics_to_fov(intrinsics: torch.Tensor):
    """
    Returns field of view in radians from normalized intrinsics matrix.
    ### Parameters:
    - intrinsics: torch.Tensor of shape (..., 3, 3)

    ### Returns:
    - fov_x: torch.Tensor of shape (...)
    - fov_y: torch.Tensor of shape (...)
    """
    focal_x = intrinsics[..., 0, 0]
    focal_y = intrinsics[..., 1, 1]
    return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y)


def point_map_to_depth_legacy(points: torch.Tensor):
    height, width = points.shape[-3:-1]
    diagonal = (height ** 2 + width ** 2) ** 0.5
    uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device)  # (H, W, 2)

    # Solve least squares problem
    b = (uv * points[..., 2:]).flatten(-3, -1)                        # (..., H * W * 2)
    A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2)   # (..., H * W * 2, 2)

    M = A.transpose(-2, -1) @ A 
    solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1)
    focal, shift = solution.unbind(-1)

    depth = points[..., 2] + shift[..., None, None]
    fov_x = torch.atan(width / diagonal / focal) * 2
    fov_y = torch.atan(height / diagonal / focal) * 2
    return depth, fov_x, fov_y, shift


def view_plane_uv_to_focal(uv: torch.Tensor):
    normed_uv = normalized_view_plane_uv(width=uv.shape[-2], height=uv.shape[-3], device=uv.device, dtype=uv.dtype)
    focal = (uv * normed_uv).sum() / uv.square().sum().add(1e-12)
    return focal


def recover_focal_shift(points: torch.Tensor, mask: torch.Tensor = None, focal: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)):
    """
    Recover the depth map and FoV from a point map with unknown z shift and focal.

    Note that it assumes:
    - the optical center is at the center of the map
    - the map is undistorted
    - the map is isometric in the x and y directions

    ### Parameters:
    - `points: torch.Tensor` of shape (..., H, W, 3)
    - `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps.

    ### Returns:
    - `focal`: torch.Tensor of shape (...) the estimated focal length, relative to the half diagonal of the map
    - `shift`: torch.Tensor of shape (...) Z-axis shift to translate the point map to camera space
    """
    shape = points.shape
    height, width = points.shape[-3], points.shape[-2]
    diagonal = (height ** 2 + width ** 2) ** 0.5

    points = points.reshape(-1, *shape[-3:])
    mask = None if mask is None else mask.reshape(-1, *shape[-3:-1])
    focal = focal.reshape(-1) if focal is not None else None
    uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device)  # (H, W, 2)

    points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1)
    uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0)
    mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0
    
    uv_lr_np = uv_lr.cpu().numpy()
    points_lr_np = points_lr.detach().cpu().numpy()
    focal_np = focal.cpu().numpy() if focal is not None else None
    mask_lr_np = None if mask is None else mask_lr.cpu().numpy()
    optim_shift, optim_focal = [], []
    for i in range(points.shape[0]):
        points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]]
        uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]]
        if uv_lr_i_np.shape[0] < 2:
            optim_focal.append(1)
            optim_shift.append(0)
            continue
        if focal is None:
            optim_shift_i, optim_focal_i = solve_optimal_focal_shift(uv_lr_i_np, points_lr_i_np)
            optim_focal.append(float(optim_focal_i))
        else:
            optim_shift_i = solve_optimal_shift(uv_lr_i_np, points_lr_i_np, focal_np[i])
        optim_shift.append(float(optim_shift_i))
    optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype).reshape(shape[:-3])

    if focal is None:
        optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype).reshape(shape[:-3])
    else:
        optim_focal = focal.reshape(shape[:-3])

    return optim_focal, optim_shift


def mask_aware_nearest_resize(
    inputs: Union[torch.Tensor, Sequence[torch.Tensor], None],
    mask: torch.BoolTensor, 
    size: Tuple[int, int], 
    return_index: bool = False
) -> Tuple[Union[torch.Tensor, Sequence[torch.Tensor], None], torch.BoolTensor, Tuple[torch.LongTensor, ...]]:
    """
    Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.

    ### Parameters
    - `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...). 
    - `mask`: input 2D mask of shape (..., H, W)
    - `size`: target size (target_width, target_height)

    ### Returns
    - `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...). 
    - `resized_mask`: mask of the resized map of shape (..., target_height, target_width)
    - `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension, .
    """
    height, width = mask.shape[-2:]
    target_width, target_height = size
    device = mask.device
    filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
    filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
    filter_size = filter_h_i * filter_w_i
    padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1

    # Window the original mask and uv
    uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device)
    indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width)
    padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device)
    padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
    padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device)
    padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
    padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device)
    padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
    windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1))
    windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1))
    windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1))

    # Gather the target pixels's local window
    target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device)
    target_lefttop = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device)
    target_window = torch.round(target_lefttop).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device)

    target_window_uv = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size)                          # (target_height, tgt_width, 2, filter_size)
    target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size)     # (..., target_height, tgt_width, filter_size)
    target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size)                      # (target_height, tgt_width, filter_size)
    target_window_indices = target_window_indices.expand_as(target_window_mask)

    # Compute nearest neighbor in the local window for each pixel 
    dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf)  # (..., target_height, tgt_width, filter_size)
    nearest = torch.argmin(dist, dim=-1, keepdim=True)                                                              # (..., target_height, tgt_width, 1)
    nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1)                            # (..., target_height, tgt_width)
    target_mask = torch.any(target_window_mask, dim=-1)
    nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
    batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])]
    
    index = (*batch_indices, nearest_i, nearest_j)
    
    if inputs is None:
        outputs = None
    elif isinstance(inputs, torch.Tensor):
        outputs = inputs[index]
    elif isinstance(inputs, Sequence):
        outputs = tuple(x[index] for x in inputs)
    else:
        raise ValueError(f'Invalid input type: {type(inputs)}')
    
    if return_index:
        return outputs, target_mask, index
    else:
        return outputs, target_mask


def theshold_depth_change(depth: torch.Tensor, mask: torch.Tensor, pooler: Literal['min', 'max'], rtol: float = 0.2, kernel_size: int = 3):
    *batch_shape, height, width = depth.shape
    depth = depth.reshape(-1, 1, height, width)
    mask = mask.reshape(-1, 1, height, width)
    if pooler =='max':
        pooled_depth = F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2)
        output_mask = pooled_depth > depth * (1 + rtol)
    elif pooler =='min':
        pooled_depth = -F.max_pool2d(-torch.where(mask, depth, torch.inf), kernel_size, stride=1, padding=kernel_size // 2)
        output_mask =  pooled_depth < depth * (1 - rtol)
    else:
        raise ValueError(f'Unsupported pooler: {pooler}')
    output_mask = output_mask.reshape(*batch_shape, height, width)
    return output_mask


def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1):
    device, dtype = depth.device, depth.dtype

    disp = torch.where(mask, 1 / depth, 0)
    disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0)
    mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False)
    disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2)  # [..., H, W, kernel_size ** 2]
    mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2)            # [..., H, W, kernel_size ** 2]

    x = torch.linspace(-kernel_size // 2, kernel_size // 2, kernel_size, device=device, dtype=dtype)
    A = torch.stack([*torch.meshgrid(x, x, indexing='xy'), torch.ones((kernel_size, kernel_size), device=device, dtype=dtype)], dim=-1).reshape(kernel_size ** 2, 3)        # [kernel_size ** 2, 3]
    A = mask_window[..., None] * A
    I = torch.eye(3, device=device, dtype=dtype)
    
    affine_disp_window = (disp_window[..., None, :] @ A @ torch.inverse(A.mT @ A + 1e-5 * I) @ A.mT).clamp_min(1e-12)[..., 0, :]  # [..., H, W, kernel_size ** 2]
    diff = torch.where(mask_window, torch.maximum(affine_disp_window, disp_window) / torch.minimum(affine_disp_window, disp_window) - 1, 0)

    edge_mask = mask & (diff > tol).any(dim=-1)

    disp_mean = weighted_mean(disp_window, mask_window, dim=-1)
    fg_edge_mask = edge_mask & (disp > disp_mean)
    # fg_edge_mask = edge_mask & theshold_depth_change(depth, mask, pooler='max', rtol=tol, kernel_size=kernel_size)
    bg_edge_mask = edge_mask & ~fg_edge_mask
    return fg_edge_mask, bg_edge_mask


def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1):
    device, dtype = depth.device, depth.dtype

    disp = torch.where(mask, 1 / depth, 0)
    disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0)
    mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False)
    disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1))  # [..., H, W, kernel_size ** 2]
    mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1))  # [..., H, W, kernel_size ** 2]

    disp_mean = weighted_mean(disp_window, mask_window, dim=(-2, -1))
    fg_edge_mask = mask & (disp / disp_mean > 1 + tol)
    bg_edge_mask = mask & (disp_mean / disp > 1 + tol)

    fg_edge_mask = fg_edge_mask & F.max_pool2d(bg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool()
    bg_edge_mask = bg_edge_mask & F.max_pool2d(fg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool()

    return fg_edge_mask, bg_edge_mask


def dilate_with_mask(input: torch.Tensor, mask: torch.BoolTensor, filter: Literal['min', 'max', 'mean', 'median'] = 'mean', iterations: int = 1) -> torch.Tensor:
    kernel = torch.tensor([[False, True, False], [True, True, True], [False, True, False]], device=input.device, dtype=torch.bool)
    for _ in range(iterations):
        input_window = utils3d.torch.sliding_window_2d(F.pad(input, (1, 1, 1, 1), mode='constant', value=0), window_size=3, stride=1, dim=(-2, -1))
        mask_window = kernel & utils3d.torch.sliding_window_2d(F.pad(mask, (1, 1, 1, 1), mode='constant', value=False), window_size=3, stride=1, dim=(-2, -1))    
        if filter =='min':
            input = torch.where(mask, input, torch.where(mask_window, input_window, torch.inf).min(dim=(-2, -1)).values)
        elif filter =='max':
            input = torch.where(mask, input, torch.where(mask_window, input_window, -torch.inf).max(dim=(-2, -1)).values)
        elif filter == 'mean':
            input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).nanmean(dim=(-2, -1)))
        elif filter =='median':
            input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).flatten(-2).nanmedian(dim=-1).values)
        mask = mask_window.any(dim=(-2, -1))
    return input, mask


def refine_depth_with_normal(depth: torch.Tensor, normal: torch.Tensor, intrinsics: torch.Tensor, iterations: int = 10, damp: float = 1e-3, eps: float = 1e-12, kernel_size: int = 5) -> torch.Tensor:
    device, dtype = depth.device, depth.dtype
    height, width = depth.shape[-2:]
    radius = kernel_size // 2

    duv = torch.stack(torch.meshgrid(torch.linspace(-radius / width, radius / width, kernel_size, device=device, dtype=dtype), torch.linspace(-radius / height, radius / height, kernel_size, device=device, dtype=dtype), indexing='xy'), dim=-1).to(dtype=dtype, device=device)

    log_depth = depth.clamp_min_(eps).log()
    log_depth_diff = utils3d.torch.sliding_window_2d(log_depth, window_size=kernel_size, stride=1, dim=(-2, -1)) - log_depth[..., radius:-radius, radius:-radius, None, None] 
    
    weight = torch.exp(-(log_depth_diff / duv.norm(dim=-1).clamp_min_(eps) / 10).square())
    tot_weight = weight.sum(dim=(-2, -1)).clamp_min_(eps)

    uv = utils3d.torch.image_uv(height=height, width=width, device=device, dtype=dtype)
    K_inv = torch.inverse(intrinsics)

    grad = -(normal[..., None, :2] @ K_inv[..., None, None, :2, :2]).squeeze(-2) \
            / (normal[..., None, 2:] + normal[..., None, :2] @ (K_inv[..., None, None, :2, :2] @ uv[..., :, None] + K_inv[..., None, None, :2, 2:])).squeeze(-2)
    laplacian = (weight * ((utils3d.torch.sliding_window_2d(grad, window_size=kernel_size, stride=1, dim=(-3, -2)) + grad[..., radius:-radius, radius:-radius, :, None, None]) * (duv.permute(2, 0, 1) / 2)).sum(dim=-3)).sum(dim=(-2, -1))
    
    laplacian = laplacian.clamp(-0.1, 0.1)
    log_depth_refine = log_depth.clone()

    for _ in range(iterations):
        log_depth_refine[..., radius:-radius, radius:-radius] = 0.1 * log_depth_refine[..., radius:-radius, radius:-radius] + 0.9 * (damp * log_depth[..., radius:-radius, radius:-radius] - laplacian + (weight * utils3d.torch.sliding_window_2d(log_depth_refine, window_size=kernel_size, stride=1, dim=(-2, -1))).sum(dim=(-2, -1))) / (tot_weight + damp) 

    depth_refine = log_depth_refine.exp()

    return depth_refine