Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,873 Bytes
a51c6d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
from typing import *
import math
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d
from .tools import timeit
from .geometry_numpy import solve_optimal_focal_shift, solve_optimal_shift
def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.mean(dim=dim, keepdim=keepdim)
else:
w = w.to(x.dtype)
return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps)
def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal()
def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).log().mean(dim=dim).exp()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp()
def normalized_view_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor:
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
if aspect_ratio is None:
aspect_ratio = width / height
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5
u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device)
v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device)
u, v = torch.meshgrid(u, v, indexing='xy')
uv = torch.stack([u, v], dim=-1)
return uv
def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor:
kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2))
kernel = kernel / kernel.sum()
kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size)
input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate')
input = F.conv2d(input, kernel, groups=input.shape[1])
return input
def focal_to_fov(focal: torch.Tensor):
return 2 * torch.atan(0.5 / focal)
def fov_to_focal(fov: torch.Tensor):
return 0.5 / torch.tan(fov / 2)
def angle_diff_vec3(v1: torch.Tensor, v2: torch.Tensor, eps: float = 1e-12):
return torch.atan2(torch.cross(v1, v2, dim=-1).norm(dim=-1) + eps, (v1 * v2).sum(dim=-1))
def intrinsics_to_fov(intrinsics: torch.Tensor):
"""
Returns field of view in radians from normalized intrinsics matrix.
### Parameters:
- intrinsics: torch.Tensor of shape (..., 3, 3)
### Returns:
- fov_x: torch.Tensor of shape (...)
- fov_y: torch.Tensor of shape (...)
"""
focal_x = intrinsics[..., 0, 0]
focal_y = intrinsics[..., 1, 1]
return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y)
def point_map_to_depth_legacy(points: torch.Tensor):
height, width = points.shape[-3:-1]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
# Solve least squares problem
b = (uv * points[..., 2:]).flatten(-3, -1) # (..., H * W * 2)
A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2) # (..., H * W * 2, 2)
M = A.transpose(-2, -1) @ A
solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1)
focal, shift = solution.unbind(-1)
depth = points[..., 2] + shift[..., None, None]
fov_x = torch.atan(width / diagonal / focal) * 2
fov_y = torch.atan(height / diagonal / focal) * 2
return depth, fov_x, fov_y, shift
def view_plane_uv_to_focal(uv: torch.Tensor):
normed_uv = normalized_view_plane_uv(width=uv.shape[-2], height=uv.shape[-3], device=uv.device, dtype=uv.dtype)
focal = (uv * normed_uv).sum() / uv.square().sum().add(1e-12)
return focal
def recover_focal_shift(points: torch.Tensor, mask: torch.Tensor = None, focal: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)):
"""
Recover the depth map and FoV from a point map with unknown z shift and focal.
Note that it assumes:
- the optical center is at the center of the map
- the map is undistorted
- the map is isometric in the x and y directions
### Parameters:
- `points: torch.Tensor` of shape (..., H, W, 3)
- `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps.
### Returns:
- `focal`: torch.Tensor of shape (...) the estimated focal length, relative to the half diagonal of the map
- `shift`: torch.Tensor of shape (...) Z-axis shift to translate the point map to camera space
"""
shape = points.shape
height, width = points.shape[-3], points.shape[-2]
diagonal = (height ** 2 + width ** 2) ** 0.5
points = points.reshape(-1, *shape[-3:])
mask = None if mask is None else mask.reshape(-1, *shape[-3:-1])
focal = focal.reshape(-1) if focal is not None else None
uv = normalized_view_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1)
uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0)
mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0
uv_lr_np = uv_lr.cpu().numpy()
points_lr_np = points_lr.detach().cpu().numpy()
focal_np = focal.cpu().numpy() if focal is not None else None
mask_lr_np = None if mask is None else mask_lr.cpu().numpy()
optim_shift, optim_focal = [], []
for i in range(points.shape[0]):
points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]]
uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]]
if uv_lr_i_np.shape[0] < 2:
optim_focal.append(1)
optim_shift.append(0)
continue
if focal is None:
optim_shift_i, optim_focal_i = solve_optimal_focal_shift(uv_lr_i_np, points_lr_i_np)
optim_focal.append(float(optim_focal_i))
else:
optim_shift_i = solve_optimal_shift(uv_lr_i_np, points_lr_i_np, focal_np[i])
optim_shift.append(float(optim_shift_i))
optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype).reshape(shape[:-3])
if focal is None:
optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype).reshape(shape[:-3])
else:
optim_focal = focal.reshape(shape[:-3])
return optim_focal, optim_shift
def mask_aware_nearest_resize(
inputs: Union[torch.Tensor, Sequence[torch.Tensor], None],
mask: torch.BoolTensor,
size: Tuple[int, int],
return_index: bool = False
) -> Tuple[Union[torch.Tensor, Sequence[torch.Tensor], None], torch.BoolTensor, Tuple[torch.LongTensor, ...]]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...).
- `mask`: input 2D mask of shape (..., H, W)
- `size`: target size (target_width, target_height)
### Returns
- `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...).
- `resized_mask`: mask of the resized map of shape (..., target_height, target_width)
- `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension, .
"""
height, width = mask.shape[-2:]
target_width, target_height = size
device = mask.device
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
# Window the original mask and uv
uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device)
indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width)
padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1))
windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1))
windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1))
# Gather the target pixels's local window
target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device)
target_lefttop = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device)
target_window = torch.round(target_lefttop).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device)
target_window_uv = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
target_window_indices = target_window_indices.expand_as(target_window_mask)
# Compute nearest neighbor in the local window for each pixel
dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf) # (..., target_height, tgt_width, filter_size)
nearest = torch.argmin(dist, dim=-1, keepdim=True) # (..., target_height, tgt_width, 1)
nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1) # (..., target_height, tgt_width)
target_mask = torch.any(target_window_mask, dim=-1)
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])]
index = (*batch_indices, nearest_i, nearest_j)
if inputs is None:
outputs = None
elif isinstance(inputs, torch.Tensor):
outputs = inputs[index]
elif isinstance(inputs, Sequence):
outputs = tuple(x[index] for x in inputs)
else:
raise ValueError(f'Invalid input type: {type(inputs)}')
if return_index:
return outputs, target_mask, index
else:
return outputs, target_mask
def theshold_depth_change(depth: torch.Tensor, mask: torch.Tensor, pooler: Literal['min', 'max'], rtol: float = 0.2, kernel_size: int = 3):
*batch_shape, height, width = depth.shape
depth = depth.reshape(-1, 1, height, width)
mask = mask.reshape(-1, 1, height, width)
if pooler =='max':
pooled_depth = F.max_pool2d(torch.where(mask, depth, -torch.inf), kernel_size, stride=1, padding=kernel_size // 2)
output_mask = pooled_depth > depth * (1 + rtol)
elif pooler =='min':
pooled_depth = -F.max_pool2d(-torch.where(mask, depth, torch.inf), kernel_size, stride=1, padding=kernel_size // 2)
output_mask = pooled_depth < depth * (1 - rtol)
else:
raise ValueError(f'Unsupported pooler: {pooler}')
output_mask = output_mask.reshape(*batch_shape, height, width)
return output_mask
def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1):
device, dtype = depth.device, depth.dtype
disp = torch.where(mask, 1 / depth, 0)
disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0)
mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False)
disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2) # [..., H, W, kernel_size ** 2]
mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)).flatten(-2) # [..., H, W, kernel_size ** 2]
x = torch.linspace(-kernel_size // 2, kernel_size // 2, kernel_size, device=device, dtype=dtype)
A = torch.stack([*torch.meshgrid(x, x, indexing='xy'), torch.ones((kernel_size, kernel_size), device=device, dtype=dtype)], dim=-1).reshape(kernel_size ** 2, 3) # [kernel_size ** 2, 3]
A = mask_window[..., None] * A
I = torch.eye(3, device=device, dtype=dtype)
affine_disp_window = (disp_window[..., None, :] @ A @ torch.inverse(A.mT @ A + 1e-5 * I) @ A.mT).clamp_min(1e-12)[..., 0, :] # [..., H, W, kernel_size ** 2]
diff = torch.where(mask_window, torch.maximum(affine_disp_window, disp_window) / torch.minimum(affine_disp_window, disp_window) - 1, 0)
edge_mask = mask & (diff > tol).any(dim=-1)
disp_mean = weighted_mean(disp_window, mask_window, dim=-1)
fg_edge_mask = edge_mask & (disp > disp_mean)
# fg_edge_mask = edge_mask & theshold_depth_change(depth, mask, pooler='max', rtol=tol, kernel_size=kernel_size)
bg_edge_mask = edge_mask & ~fg_edge_mask
return fg_edge_mask, bg_edge_mask
def depth_occlusion_edge(depth: torch.FloatTensor, mask: torch.BoolTensor, kernel_size: int = 3, tol: float = 0.1):
device, dtype = depth.device, depth.dtype
disp = torch.where(mask, 1 / depth, 0)
disp_pad = F.pad(disp, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=0)
mask_pad = F.pad(mask, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), value=False)
disp_window = utils3d.torch.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)) # [..., H, W, kernel_size ** 2]
mask_window = utils3d.torch.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, dim=(-2, -1)) # [..., H, W, kernel_size ** 2]
disp_mean = weighted_mean(disp_window, mask_window, dim=(-2, -1))
fg_edge_mask = mask & (disp / disp_mean > 1 + tol)
bg_edge_mask = mask & (disp_mean / disp > 1 + tol)
fg_edge_mask = fg_edge_mask & F.max_pool2d(bg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool()
bg_edge_mask = bg_edge_mask & F.max_pool2d(fg_edge_mask.float(), kernel_size + 2, stride=1, padding=kernel_size // 2 + 1).bool()
return fg_edge_mask, bg_edge_mask
def dilate_with_mask(input: torch.Tensor, mask: torch.BoolTensor, filter: Literal['min', 'max', 'mean', 'median'] = 'mean', iterations: int = 1) -> torch.Tensor:
kernel = torch.tensor([[False, True, False], [True, True, True], [False, True, False]], device=input.device, dtype=torch.bool)
for _ in range(iterations):
input_window = utils3d.torch.sliding_window_2d(F.pad(input, (1, 1, 1, 1), mode='constant', value=0), window_size=3, stride=1, dim=(-2, -1))
mask_window = kernel & utils3d.torch.sliding_window_2d(F.pad(mask, (1, 1, 1, 1), mode='constant', value=False), window_size=3, stride=1, dim=(-2, -1))
if filter =='min':
input = torch.where(mask, input, torch.where(mask_window, input_window, torch.inf).min(dim=(-2, -1)).values)
elif filter =='max':
input = torch.where(mask, input, torch.where(mask_window, input_window, -torch.inf).max(dim=(-2, -1)).values)
elif filter == 'mean':
input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).nanmean(dim=(-2, -1)))
elif filter =='median':
input = torch.where(mask, input, torch.where(mask_window, input_window, torch.nan).flatten(-2).nanmedian(dim=-1).values)
mask = mask_window.any(dim=(-2, -1))
return input, mask
def refine_depth_with_normal(depth: torch.Tensor, normal: torch.Tensor, intrinsics: torch.Tensor, iterations: int = 10, damp: float = 1e-3, eps: float = 1e-12, kernel_size: int = 5) -> torch.Tensor:
device, dtype = depth.device, depth.dtype
height, width = depth.shape[-2:]
radius = kernel_size // 2
duv = torch.stack(torch.meshgrid(torch.linspace(-radius / width, radius / width, kernel_size, device=device, dtype=dtype), torch.linspace(-radius / height, radius / height, kernel_size, device=device, dtype=dtype), indexing='xy'), dim=-1).to(dtype=dtype, device=device)
log_depth = depth.clamp_min_(eps).log()
log_depth_diff = utils3d.torch.sliding_window_2d(log_depth, window_size=kernel_size, stride=1, dim=(-2, -1)) - log_depth[..., radius:-radius, radius:-radius, None, None]
weight = torch.exp(-(log_depth_diff / duv.norm(dim=-1).clamp_min_(eps) / 10).square())
tot_weight = weight.sum(dim=(-2, -1)).clamp_min_(eps)
uv = utils3d.torch.image_uv(height=height, width=width, device=device, dtype=dtype)
K_inv = torch.inverse(intrinsics)
grad = -(normal[..., None, :2] @ K_inv[..., None, None, :2, :2]).squeeze(-2) \
/ (normal[..., None, 2:] + normal[..., None, :2] @ (K_inv[..., None, None, :2, :2] @ uv[..., :, None] + K_inv[..., None, None, :2, 2:])).squeeze(-2)
laplacian = (weight * ((utils3d.torch.sliding_window_2d(grad, window_size=kernel_size, stride=1, dim=(-3, -2)) + grad[..., radius:-radius, radius:-radius, :, None, None]) * (duv.permute(2, 0, 1) / 2)).sum(dim=-3)).sum(dim=(-2, -1))
laplacian = laplacian.clamp(-0.1, 0.1)
log_depth_refine = log_depth.clone()
for _ in range(iterations):
log_depth_refine[..., radius:-radius, radius:-radius] = 0.1 * log_depth_refine[..., radius:-radius, radius:-radius] + 0.9 * (damp * log_depth[..., radius:-radius, radius:-radius] - laplacian + (weight * utils3d.torch.sliding_window_2d(log_depth_refine, window_size=kernel_size, stride=1, dim=(-2, -1))).sum(dim=(-2, -1))) / (tot_weight + damp)
depth_refine = log_depth_refine.exp()
return depth_refine |