SpatialTracker2 / models /moge /utils /geometry_numpy.py
xiaoyuxi
gradio_app
a51c6d2
from typing import *
from functools import partial
import math
import cv2
import numpy as np
from scipy.signal import fftconvolve
import numpy as np
import utils3d
from .tools import timeit
def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
if w is None:
return np.mean(x, axis=axis)
else:
w = w.astype(x.dtype)
return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None)
def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
if w is None:
return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis)
else:
w = w.astype(x.dtype)
return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps)
def normalized_view_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray:
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
if aspect_ratio is None:
aspect_ratio = width / height
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5
u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype)
v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype)
u, v = np.meshgrid(u, v, indexing='xy')
uv = np.stack([u, v], axis=-1)
return uv
def focal_to_fov_numpy(focal: np.ndarray):
return 2 * np.arctan(0.5 / focal)
def fov_to_focal_numpy(fov: np.ndarray):
return 0.5 / np.tan(fov / 2)
def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0])
fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1])
return fov_x, fov_y
def point_map_to_depth_legacy_numpy(points: np.ndarray):
height, width = points.shape[-3:-1]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = normalized_view_plane_uv_numpy(width, height, dtype=points.dtype) # (H, W, 2)
_, uv = np.broadcast_arrays(points[..., :2], uv)
# Solve least squares problem
b = (uv * points[..., 2:]).reshape(*points.shape[:-3], -1) # (..., H * W * 2)
A = np.stack([points[..., :2], -uv], axis=-1).reshape(*points.shape[:-3], -1, 2) # (..., H * W * 2, 2)
M = A.swapaxes(-2, -1) @ A
solution = (np.linalg.inv(M + 1e-6 * np.eye(2)) @ (A.swapaxes(-2, -1) @ b[..., None])).squeeze(-1)
focal, shift = solution
depth = points[..., 2] + shift[..., None, None]
fov_x = np.arctan(width / diagonal / focal) * 2
fov_y = np.arctan(height / diagonal / focal) * 2
return depth, fov_x, fov_y, shift
def solve_optimal_focal_shift(uv: np.ndarray, xyz: np.ndarray):
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal"
from scipy.optimize import least_squares
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
xy_proj = xy / (z + shift)[: , None]
f = (xy_proj * uv).sum() / np.square(xy_proj).sum()
err = (f * xy_proj - uv).ravel()
return err
solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm')
optim_shift = solution['x'].squeeze().astype(np.float32)
xy_proj = xy / (z + optim_shift)[: , None]
optim_focal = (xy_proj * uv).sum() / np.square(xy_proj).sum()
return optim_shift, optim_focal
def solve_optimal_shift(uv: np.ndarray, xyz: np.ndarray, focal: float):
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift"
from scipy.optimize import least_squares
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
xy_proj = xy / (z + shift)[: , None]
err = (focal * xy_proj - uv).ravel()
return err
solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm')
optim_shift = solution['x'].squeeze().astype(np.float32)
return optim_shift
def recover_focal_shift_numpy(points: np.ndarray, mask: np.ndarray = None, focal: float = None, downsample_size: Tuple[int, int] = (64, 64)):
import cv2
assert points.shape[-1] == 3, "Points should (H, W, 3)"
height, width = points.shape[-3], points.shape[-2]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = normalized_view_plane_uv_numpy(width=width, height=height)
if mask is None:
points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3)
uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2)
else:
(points_lr, uv_lr), mask_lr = mask_aware_nearest_resize_numpy((points, uv), mask, downsample_size)
if points_lr.size < 2:
return 1., 0.
if focal is None:
focal, shift = solve_optimal_focal_shift(uv_lr, points_lr)
else:
shift = solve_optimal_shift(uv_lr, points_lr, focal)
return focal, shift
def mask_aware_nearest_resize_numpy(
inputs: Union[np.ndarray, Tuple[np.ndarray, ...], None],
mask: np.ndarray,
size: Tuple[int, int],
return_index: bool = False
) -> Tuple[Union[np.ndarray, Tuple[np.ndarray, ...], None], np.ndarray, Tuple[np.ndarray, ...]]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...).
- `mask`: input 2D mask of shape (..., H, W)
- `size`: target size (width, height)
### Returns
- `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...).
- `resized_mask`: mask of the resized map of shape (..., target_height, target_width)
- `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension.
"""
height, width = mask.shape[-2:]
target_width, target_height = size
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
# Window the original mask and uv
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))
# Gather the target pixels's local window
target_centers = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
target_lefttop = target_centers - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
target_window = np.round(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)
target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(*([-1] * (mask.ndim - 2)), target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
# Compute nearest neighbor in the local window for each pixel
dist = np.square(target_window_centers - target_centers[..., None])
dist = dist[..., 0, :] + dist[..., 1, :]
dist = np.where(target_window_mask, dist, np.inf) # (..., target_height, tgt_width, filter_size)
nearest_in_window = np.argmin(dist, axis=-1, keepdims=True) # (..., target_height, tgt_width, 1)
nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1) # (..., target_height, tgt_width)
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
target_mask = np.any(target_window_mask, axis=-1)
batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])]
index = (*batch_indices, nearest_i, nearest_j)
if inputs is None:
outputs = None
elif isinstance(inputs, np.ndarray):
outputs = inputs[index]
elif isinstance(inputs, Sequence):
outputs = tuple(x[index] for x in inputs)
else:
raise ValueError(f'Invalid input type: {type(inputs)}')
if return_index:
return outputs, target_mask, index
else:
return outputs, target_mask
def mask_aware_area_resize_numpy(image: np.ndarray, mask: np.ndarray, target_width: int, target_height: int) -> Tuple[Tuple[np.ndarray, ...], np.ndarray]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `image`: Input 2D image of shape (..., H, W, C)
- `mask`: Input 2D mask of shape (..., H, W)
- `target_width`: target width of the resized map
- `target_height`: target height of the resized map
### Returns
- `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width).
- `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
"""
height, width = mask.shape[-2:]
if image.shape[-2:] == (height, width):
omit_channel_dim = True
else:
omit_channel_dim = False
if omit_channel_dim:
image = image[..., None]
image = np.where(mask[..., None], image, 0)
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f) + 1, math.ceil(filter_w_f) + 1
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
# Window the original mask and uv (non-copy)
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))
# Gather the target pixels's local window
target_center = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
target_lefttop = target_center - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
target_bottomright = target_center + np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
target_window = np.floor(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)
target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
# Compute pixel area in the local windows
target_window_lefttop = np.maximum(target_window_centers - 0.5, target_lefttop[..., None])
target_window_bottomright = np.minimum(target_window_centers + 0.5, target_bottomright[..., None])
target_window_area = (target_window_bottomright - target_window_lefttop).clip(0, None)
target_window_area = np.where(target_window_mask, target_window_area[..., 0, :] * target_window_area[..., 1, :], 0)
# Weighted sum by area
target_window_image = image.reshape(*image.shape[:-3], height * width, -1)[..., target_window_indices, :].swapaxes(-2, -1)
target_mask = np.sum(target_window_area, axis=-1) >= 0.25
target_image = weighted_mean_numpy(target_window_image, target_window_area[..., None, :], axis=-1)
if omit_channel_dim:
target_image = target_image[..., 0]
return target_image, target_mask
def norm3d(x: np.ndarray) -> np.ndarray:
"Faster `np.linalg.norm(x, axis=-1)` for 3D vectors"
return np.sqrt(np.square(x[..., 0]) + np.square(x[..., 1]) + np.square(x[..., 2]))
def depth_occlusion_edge_numpy(depth: np.ndarray, mask: np.ndarray, thickness: int = 1, tol: float = 0.1):
disp = np.where(mask, 1 / depth, 0)
disp_pad = np.pad(disp, (thickness, thickness), constant_values=0)
mask_pad = np.pad(mask, (thickness, thickness), constant_values=False)
kernel_size = 2 * thickness + 1
disp_window = utils3d.numpy.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, axis=(-2, -1)) # [..., H, W, kernel_size ** 2]
mask_window = utils3d.numpy.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, axis=(-2, -1)) # [..., H, W, kernel_size ** 2]
disp_mean = weighted_mean_numpy(disp_window, mask_window, axis=(-2, -1))
fg_edge_mask = mask & (disp > (1 + tol) * disp_mean)
bg_edge_mask = mask & (disp_mean > (1 + tol) * disp)
edge_mask = (cv2.dilate(fg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0) \
& (cv2.dilate(bg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0)
return edge_mask
def disk_kernel(radius: int) -> np.ndarray:
"""
Generate disk kernel with given radius.
Args:
radius (int): Radius of the disk (in pixels).
Returns:
np.ndarray: (2*radius+1, 2*radius+1) normalized convolution kernel.
"""
# Create coordinate grid centered at (0,0)
L = np.arange(-radius, radius + 1)
X, Y = np.meshgrid(L, L)
# Generate disk: region inside circle with radius R is 1
kernel = ((X**2 + Y**2) <= radius**2).astype(np.float32)
# Normalize the kernel
kernel /= np.sum(kernel)
return kernel
def disk_blur(image: np.ndarray, radius: int) -> np.ndarray:
"""
Apply disk blur to an image using FFT convolution.
Args:
image (np.ndarray): Input image, can be grayscale or color.
radius (int): Blur radius (in pixels).
Returns:
np.ndarray: Blurred image.
"""
if radius == 0:
return image
kernel = disk_kernel(radius)
if image.ndim == 2:
blurred = fftconvolve(image, kernel, mode='same')
elif image.ndim == 3:
channels = []
for i in range(image.shape[2]):
blurred_channel = fftconvolve(image[..., i], kernel, mode='same')
channels.append(blurred_channel)
blurred = np.stack(channels, axis=-1)
else:
raise ValueError("Image must be 2D or 3D.")
return blurred
def depth_of_field(
img: np.ndarray,
disp: np.ndarray,
focus_disp : float,
max_blur_radius : int = 10,
) -> np.ndarray:
"""
Apply depth of field effect to an image.
Args:
img (numpy.ndarray): (H, W, 3) input image.
depth (numpy.ndarray): (H, W) depth map of the scene.
focus_depth (float): Focus depth of the lens.
strength (float): Strength of the depth of field effect.
max_blur_radius (int): Maximum blur radius (in pixels).
Returns:
numpy.ndarray: (H, W, 3) output image with depth of field effect applied.
"""
# Precalculate dialated depth map for each blur radius
max_disp = np.max(disp)
disp = disp / max_disp
focus_disp = focus_disp / max_disp
dilated_disp = []
for radius in range(max_blur_radius + 1):
dilated_disp.append(cv2.dilate(disp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1)), iterations=1))
# Determine the blur radius for each pixel based on the depth map
blur_radii = np.clip(abs(disp - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32)
for radius in range(max_blur_radius + 1):
dialted_blur_radii = np.clip(abs(dilated_disp[radius] - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32)
mask = (dialted_blur_radii >= radius) & (dialted_blur_radii >= blur_radii) & (dilated_disp[radius] > disp)
blur_radii[mask] = dialted_blur_radii[mask]
blur_radii = np.clip(blur_radii, 0, max_blur_radius)
blur_radii = cv2.blur(blur_radii, (5, 5))
# Precalculate the blured image for each blur radius
unique_radii = np.unique(blur_radii)
precomputed = {}
for radius in range(max_blur_radius + 1):
if radius not in unique_radii:
continue
precomputed[radius] = disk_blur(img, radius)
# Composit the blured image for each pixel
output = np.zeros_like(img)
for r in unique_radii:
mask = blur_radii == r
output[mask] = precomputed[r][mask]
return output