Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
from functools import partial | |
import math | |
import cv2 | |
import numpy as np | |
from scipy.signal import fftconvolve | |
import numpy as np | |
import utils3d | |
from .tools import timeit | |
def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray: | |
if w is None: | |
return np.mean(x, axis=axis) | |
else: | |
w = w.astype(x.dtype) | |
return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None) | |
def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray: | |
if w is None: | |
return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis) | |
else: | |
w = w.astype(x.dtype) | |
return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps) | |
def normalized_view_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray: | |
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)" | |
if aspect_ratio is None: | |
aspect_ratio = width / height | |
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 | |
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5 | |
u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype) | |
v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype) | |
u, v = np.meshgrid(u, v, indexing='xy') | |
uv = np.stack([u, v], axis=-1) | |
return uv | |
def focal_to_fov_numpy(focal: np.ndarray): | |
return 2 * np.arctan(0.5 / focal) | |
def fov_to_focal_numpy(fov: np.ndarray): | |
return 0.5 / np.tan(fov / 2) | |
def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0]) | |
fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1]) | |
return fov_x, fov_y | |
def point_map_to_depth_legacy_numpy(points: np.ndarray): | |
height, width = points.shape[-3:-1] | |
diagonal = (height ** 2 + width ** 2) ** 0.5 | |
uv = normalized_view_plane_uv_numpy(width, height, dtype=points.dtype) # (H, W, 2) | |
_, uv = np.broadcast_arrays(points[..., :2], uv) | |
# Solve least squares problem | |
b = (uv * points[..., 2:]).reshape(*points.shape[:-3], -1) # (..., H * W * 2) | |
A = np.stack([points[..., :2], -uv], axis=-1).reshape(*points.shape[:-3], -1, 2) # (..., H * W * 2, 2) | |
M = A.swapaxes(-2, -1) @ A | |
solution = (np.linalg.inv(M + 1e-6 * np.eye(2)) @ (A.swapaxes(-2, -1) @ b[..., None])).squeeze(-1) | |
focal, shift = solution | |
depth = points[..., 2] + shift[..., None, None] | |
fov_x = np.arctan(width / diagonal / focal) * 2 | |
fov_y = np.arctan(height / diagonal / focal) * 2 | |
return depth, fov_x, fov_y, shift | |
def solve_optimal_focal_shift(uv: np.ndarray, xyz: np.ndarray): | |
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal" | |
from scipy.optimize import least_squares | |
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1) | |
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray): | |
xy_proj = xy / (z + shift)[: , None] | |
f = (xy_proj * uv).sum() / np.square(xy_proj).sum() | |
err = (f * xy_proj - uv).ravel() | |
return err | |
solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm') | |
optim_shift = solution['x'].squeeze().astype(np.float32) | |
xy_proj = xy / (z + optim_shift)[: , None] | |
optim_focal = (xy_proj * uv).sum() / np.square(xy_proj).sum() | |
return optim_shift, optim_focal | |
def solve_optimal_shift(uv: np.ndarray, xyz: np.ndarray, focal: float): | |
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift" | |
from scipy.optimize import least_squares | |
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1) | |
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray): | |
xy_proj = xy / (z + shift)[: , None] | |
err = (focal * xy_proj - uv).ravel() | |
return err | |
solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm') | |
optim_shift = solution['x'].squeeze().astype(np.float32) | |
return optim_shift | |
def recover_focal_shift_numpy(points: np.ndarray, mask: np.ndarray = None, focal: float = None, downsample_size: Tuple[int, int] = (64, 64)): | |
import cv2 | |
assert points.shape[-1] == 3, "Points should (H, W, 3)" | |
height, width = points.shape[-3], points.shape[-2] | |
diagonal = (height ** 2 + width ** 2) ** 0.5 | |
uv = normalized_view_plane_uv_numpy(width=width, height=height) | |
if mask is None: | |
points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3) | |
uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2) | |
else: | |
(points_lr, uv_lr), mask_lr = mask_aware_nearest_resize_numpy((points, uv), mask, downsample_size) | |
if points_lr.size < 2: | |
return 1., 0. | |
if focal is None: | |
focal, shift = solve_optimal_focal_shift(uv_lr, points_lr) | |
else: | |
shift = solve_optimal_shift(uv_lr, points_lr, focal) | |
return focal, shift | |
def mask_aware_nearest_resize_numpy( | |
inputs: Union[np.ndarray, Tuple[np.ndarray, ...], None], | |
mask: np.ndarray, | |
size: Tuple[int, int], | |
return_index: bool = False | |
) -> Tuple[Union[np.ndarray, Tuple[np.ndarray, ...], None], np.ndarray, Tuple[np.ndarray, ...]]: | |
""" | |
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map. | |
### Parameters | |
- `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...). | |
- `mask`: input 2D mask of shape (..., H, W) | |
- `size`: target size (width, height) | |
### Returns | |
- `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...). | |
- `resized_mask`: mask of the resized map of shape (..., target_height, target_width) | |
- `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension. | |
""" | |
height, width = mask.shape[-2:] | |
target_width, target_height = size | |
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width) | |
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f) | |
filter_size = filter_h_i * filter_w_i | |
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1 | |
# Window the original mask and uv | |
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32) | |
indices = np.arange(height * width, dtype=np.int32).reshape(height, width) | |
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32) | |
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv | |
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool) | |
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask | |
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32) | |
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices | |
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1)) | |
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1)) | |
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1)) | |
# Gather the target pixels's local window | |
target_centers = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32) | |
target_lefttop = target_centers - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32) | |
target_window = np.round(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32) | |
target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size) | |
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size) | |
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(*([-1] * (mask.ndim - 2)), target_height, target_width, filter_size) # (target_height, tgt_width, filter_size) | |
# Compute nearest neighbor in the local window for each pixel | |
dist = np.square(target_window_centers - target_centers[..., None]) | |
dist = dist[..., 0, :] + dist[..., 1, :] | |
dist = np.where(target_window_mask, dist, np.inf) # (..., target_height, tgt_width, filter_size) | |
nearest_in_window = np.argmin(dist, axis=-1, keepdims=True) # (..., target_height, tgt_width, 1) | |
nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1) # (..., target_height, tgt_width) | |
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width | |
target_mask = np.any(target_window_mask, axis=-1) | |
batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])] | |
index = (*batch_indices, nearest_i, nearest_j) | |
if inputs is None: | |
outputs = None | |
elif isinstance(inputs, np.ndarray): | |
outputs = inputs[index] | |
elif isinstance(inputs, Sequence): | |
outputs = tuple(x[index] for x in inputs) | |
else: | |
raise ValueError(f'Invalid input type: {type(inputs)}') | |
if return_index: | |
return outputs, target_mask, index | |
else: | |
return outputs, target_mask | |
def mask_aware_area_resize_numpy(image: np.ndarray, mask: np.ndarray, target_width: int, target_height: int) -> Tuple[Tuple[np.ndarray, ...], np.ndarray]: | |
""" | |
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map. | |
### Parameters | |
- `image`: Input 2D image of shape (..., H, W, C) | |
- `mask`: Input 2D mask of shape (..., H, W) | |
- `target_width`: target width of the resized map | |
- `target_height`: target height of the resized map | |
### Returns | |
- `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width). | |
- `target_mask`: Mask of the resized map of shape (..., target_height, target_width) | |
""" | |
height, width = mask.shape[-2:] | |
if image.shape[-2:] == (height, width): | |
omit_channel_dim = True | |
else: | |
omit_channel_dim = False | |
if omit_channel_dim: | |
image = image[..., None] | |
image = np.where(mask[..., None], image, 0) | |
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width) | |
filter_h_i, filter_w_i = math.ceil(filter_h_f) + 1, math.ceil(filter_w_f) + 1 | |
filter_size = filter_h_i * filter_w_i | |
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1 | |
# Window the original mask and uv (non-copy) | |
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32) | |
indices = np.arange(height * width, dtype=np.int32).reshape(height, width) | |
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32) | |
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv | |
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool) | |
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask | |
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32) | |
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices | |
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1)) | |
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1)) | |
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1)) | |
# Gather the target pixels's local window | |
target_center = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32) | |
target_lefttop = target_center - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32) | |
target_bottomright = target_center + np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32) | |
target_window = np.floor(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32) | |
target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size) | |
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size) | |
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size) | |
# Compute pixel area in the local windows | |
target_window_lefttop = np.maximum(target_window_centers - 0.5, target_lefttop[..., None]) | |
target_window_bottomright = np.minimum(target_window_centers + 0.5, target_bottomright[..., None]) | |
target_window_area = (target_window_bottomright - target_window_lefttop).clip(0, None) | |
target_window_area = np.where(target_window_mask, target_window_area[..., 0, :] * target_window_area[..., 1, :], 0) | |
# Weighted sum by area | |
target_window_image = image.reshape(*image.shape[:-3], height * width, -1)[..., target_window_indices, :].swapaxes(-2, -1) | |
target_mask = np.sum(target_window_area, axis=-1) >= 0.25 | |
target_image = weighted_mean_numpy(target_window_image, target_window_area[..., None, :], axis=-1) | |
if omit_channel_dim: | |
target_image = target_image[..., 0] | |
return target_image, target_mask | |
def norm3d(x: np.ndarray) -> np.ndarray: | |
"Faster `np.linalg.norm(x, axis=-1)` for 3D vectors" | |
return np.sqrt(np.square(x[..., 0]) + np.square(x[..., 1]) + np.square(x[..., 2])) | |
def depth_occlusion_edge_numpy(depth: np.ndarray, mask: np.ndarray, thickness: int = 1, tol: float = 0.1): | |
disp = np.where(mask, 1 / depth, 0) | |
disp_pad = np.pad(disp, (thickness, thickness), constant_values=0) | |
mask_pad = np.pad(mask, (thickness, thickness), constant_values=False) | |
kernel_size = 2 * thickness + 1 | |
disp_window = utils3d.numpy.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, axis=(-2, -1)) # [..., H, W, kernel_size ** 2] | |
mask_window = utils3d.numpy.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, axis=(-2, -1)) # [..., H, W, kernel_size ** 2] | |
disp_mean = weighted_mean_numpy(disp_window, mask_window, axis=(-2, -1)) | |
fg_edge_mask = mask & (disp > (1 + tol) * disp_mean) | |
bg_edge_mask = mask & (disp_mean > (1 + tol) * disp) | |
edge_mask = (cv2.dilate(fg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0) \ | |
& (cv2.dilate(bg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0) | |
return edge_mask | |
def disk_kernel(radius: int) -> np.ndarray: | |
""" | |
Generate disk kernel with given radius. | |
Args: | |
radius (int): Radius of the disk (in pixels). | |
Returns: | |
np.ndarray: (2*radius+1, 2*radius+1) normalized convolution kernel. | |
""" | |
# Create coordinate grid centered at (0,0) | |
L = np.arange(-radius, radius + 1) | |
X, Y = np.meshgrid(L, L) | |
# Generate disk: region inside circle with radius R is 1 | |
kernel = ((X**2 + Y**2) <= radius**2).astype(np.float32) | |
# Normalize the kernel | |
kernel /= np.sum(kernel) | |
return kernel | |
def disk_blur(image: np.ndarray, radius: int) -> np.ndarray: | |
""" | |
Apply disk blur to an image using FFT convolution. | |
Args: | |
image (np.ndarray): Input image, can be grayscale or color. | |
radius (int): Blur radius (in pixels). | |
Returns: | |
np.ndarray: Blurred image. | |
""" | |
if radius == 0: | |
return image | |
kernel = disk_kernel(radius) | |
if image.ndim == 2: | |
blurred = fftconvolve(image, kernel, mode='same') | |
elif image.ndim == 3: | |
channels = [] | |
for i in range(image.shape[2]): | |
blurred_channel = fftconvolve(image[..., i], kernel, mode='same') | |
channels.append(blurred_channel) | |
blurred = np.stack(channels, axis=-1) | |
else: | |
raise ValueError("Image must be 2D or 3D.") | |
return blurred | |
def depth_of_field( | |
img: np.ndarray, | |
disp: np.ndarray, | |
focus_disp : float, | |
max_blur_radius : int = 10, | |
) -> np.ndarray: | |
""" | |
Apply depth of field effect to an image. | |
Args: | |
img (numpy.ndarray): (H, W, 3) input image. | |
depth (numpy.ndarray): (H, W) depth map of the scene. | |
focus_depth (float): Focus depth of the lens. | |
strength (float): Strength of the depth of field effect. | |
max_blur_radius (int): Maximum blur radius (in pixels). | |
Returns: | |
numpy.ndarray: (H, W, 3) output image with depth of field effect applied. | |
""" | |
# Precalculate dialated depth map for each blur radius | |
max_disp = np.max(disp) | |
disp = disp / max_disp | |
focus_disp = focus_disp / max_disp | |
dilated_disp = [] | |
for radius in range(max_blur_radius + 1): | |
dilated_disp.append(cv2.dilate(disp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1)), iterations=1)) | |
# Determine the blur radius for each pixel based on the depth map | |
blur_radii = np.clip(abs(disp - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32) | |
for radius in range(max_blur_radius + 1): | |
dialted_blur_radii = np.clip(abs(dilated_disp[radius] - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32) | |
mask = (dialted_blur_radii >= radius) & (dialted_blur_radii >= blur_radii) & (dilated_disp[radius] > disp) | |
blur_radii[mask] = dialted_blur_radii[mask] | |
blur_radii = np.clip(blur_radii, 0, max_blur_radius) | |
blur_radii = cv2.blur(blur_radii, (5, 5)) | |
# Precalculate the blured image for each blur radius | |
unique_radii = np.unique(blur_radii) | |
precomputed = {} | |
for radius in range(max_blur_radius + 1): | |
if radius not in unique_radii: | |
continue | |
precomputed[radius] = disk_blur(img, radius) | |
# Composit the blured image for each pixel | |
output = np.zeros_like(img) | |
for r in unique_radii: | |
mask = blur_radii == r | |
output[mask] = precomputed[r][mask] | |
return output | |