File size: 19,323 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from typing import *
from functools import partial
import math

import cv2
import numpy as np
from scipy.signal import fftconvolve
import numpy as np
import utils3d

from .tools import timeit


def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
    if w is None:
        return np.mean(x, axis=axis)
    else:
        w = w.astype(x.dtype)
        return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None)


def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
    if w is None:
        return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis)
    else:
        w = w.astype(x.dtype)
        return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps)


def normalized_view_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray:
    "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
    if aspect_ratio is None:
        aspect_ratio = width / height
    
    span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
    span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5

    u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype)
    v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype)
    u, v = np.meshgrid(u, v, indexing='xy')
    uv = np.stack([u, v], axis=-1)
    return uv


def focal_to_fov_numpy(focal: np.ndarray):
    return 2 * np.arctan(0.5 / focal)


def fov_to_focal_numpy(fov: np.ndarray):
    return 0.5 / np.tan(fov / 2)


def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0])
    fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1])
    return fov_x, fov_y


def point_map_to_depth_legacy_numpy(points: np.ndarray):
    height, width = points.shape[-3:-1]
    diagonal = (height ** 2 + width ** 2) ** 0.5
    uv = normalized_view_plane_uv_numpy(width, height, dtype=points.dtype)  # (H, W, 2)
    _, uv = np.broadcast_arrays(points[..., :2], uv)

    # Solve least squares problem
    b = (uv * points[..., 2:]).reshape(*points.shape[:-3], -1)                                  # (..., H * W * 2)
    A = np.stack([points[..., :2], -uv], axis=-1).reshape(*points.shape[:-3], -1, 2)   # (..., H * W * 2, 2)

    M = A.swapaxes(-2, -1) @ A 
    solution = (np.linalg.inv(M + 1e-6 * np.eye(2)) @ (A.swapaxes(-2, -1) @ b[..., None])).squeeze(-1)
    focal, shift = solution

    depth = points[..., 2] + shift[..., None, None]
    fov_x = np.arctan(width / diagonal / focal) * 2
    fov_y = np.arctan(height / diagonal / focal) * 2
    return depth, fov_x, fov_y, shift


def solve_optimal_focal_shift(uv: np.ndarray, xyz: np.ndarray):
    "Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal"
    from scipy.optimize import least_squares
    uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)

    def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
        xy_proj = xy / (z + shift)[: , None]
        f = (xy_proj * uv).sum() / np.square(xy_proj).sum()
        err = (f * xy_proj - uv).ravel()
        return err

    solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm')
    optim_shift = solution['x'].squeeze().astype(np.float32)

    xy_proj = xy / (z + optim_shift)[: , None]
    optim_focal = (xy_proj * uv).sum() / np.square(xy_proj).sum()

    return optim_shift, optim_focal


def solve_optimal_shift(uv: np.ndarray, xyz: np.ndarray, focal: float):
    "Solve `min |focal * xy / (z + shift) - uv|` with respect to shift"
    from scipy.optimize import least_squares
    uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)

    def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
        xy_proj = xy / (z + shift)[: , None]
        err = (focal * xy_proj - uv).ravel()
        return err

    solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm')
    optim_shift = solution['x'].squeeze().astype(np.float32)

    return optim_shift


def recover_focal_shift_numpy(points: np.ndarray, mask: np.ndarray = None, focal: float = None, downsample_size: Tuple[int, int] = (64, 64)):
    import cv2
    assert points.shape[-1] == 3, "Points should (H, W, 3)"

    height, width = points.shape[-3], points.shape[-2]
    diagonal = (height ** 2 + width ** 2) ** 0.5

    uv = normalized_view_plane_uv_numpy(width=width, height=height)
    
    if mask is None:
        points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3)
        uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2)
    else:
        (points_lr, uv_lr), mask_lr = mask_aware_nearest_resize_numpy((points, uv), mask, downsample_size)
    
    if points_lr.size < 2:
        return 1., 0.
    
    if focal is None:
        focal, shift = solve_optimal_focal_shift(uv_lr, points_lr)
    else:
        shift = solve_optimal_shift(uv_lr, points_lr, focal)

    return focal, shift


def mask_aware_nearest_resize_numpy(
    inputs: Union[np.ndarray, Tuple[np.ndarray, ...], None],
    mask: np.ndarray, 
    size: Tuple[int, int], 
    return_index: bool = False
) -> Tuple[Union[np.ndarray, Tuple[np.ndarray, ...], None], np.ndarray, Tuple[np.ndarray, ...]]:
    """
    Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.

    ### Parameters
    - `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...). 
    - `mask`: input 2D mask of shape (..., H, W)
    - `size`: target size (width, height)

    ### Returns
    - `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...). 
    - `resized_mask`: mask of the resized map of shape (..., target_height, target_width)
    - `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension.
    """
    height, width = mask.shape[-2:]
    target_width, target_height = size
    filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
    filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
    filter_size = filter_h_i * filter_w_i
    padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
    
    # Window the original mask and uv
    uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
    indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
    padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
    padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
    padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
    padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
    padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
    padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
    windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
    windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
    windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))

    # Gather the target pixels's local window
    target_centers = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
    target_lefttop = target_centers - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
    target_window = np.round(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)

    target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size)                          # (target_height, tgt_width, 2, filter_size)
    target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size)     # (..., target_height, tgt_width, filter_size)
    target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(*([-1] * (mask.ndim - 2)), target_height, target_width, filter_size)                      # (target_height, tgt_width, filter_size)

    # Compute nearest neighbor in the local window for each pixel 
    dist = np.square(target_window_centers - target_centers[..., None])
    dist = dist[..., 0, :] + dist[..., 1, :]
    dist = np.where(target_window_mask, dist, np.inf)                                                   # (..., target_height, tgt_width, filter_size)
    nearest_in_window = np.argmin(dist, axis=-1, keepdims=True)                                         # (..., target_height, tgt_width, 1)
    nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1)     # (..., target_height, tgt_width)
    nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
    target_mask = np.any(target_window_mask, axis=-1)
    batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])]

    index = (*batch_indices, nearest_i, nearest_j)
    
    if inputs is None:
        outputs = None
    elif isinstance(inputs, np.ndarray):
        outputs = inputs[index]
    elif isinstance(inputs, Sequence):
        outputs = tuple(x[index] for x in inputs)
    else:
        raise ValueError(f'Invalid input type: {type(inputs)}')
    
    if return_index:
        return outputs, target_mask, index
    else:
        return outputs, target_mask


def mask_aware_area_resize_numpy(image: np.ndarray, mask: np.ndarray, target_width: int, target_height: int) -> Tuple[Tuple[np.ndarray, ...], np.ndarray]:
    """
    Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.

    ### Parameters
    - `image`: Input 2D image of shape (..., H, W, C)
    - `mask`: Input 2D mask of shape (..., H, W)
    - `target_width`: target width of the resized map
    - `target_height`: target height of the resized map

    ### Returns
    - `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width). 
    - `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
    """
    height, width = mask.shape[-2:]

    if image.shape[-2:] == (height, width):
        omit_channel_dim = True
    else:
        omit_channel_dim = False
    if omit_channel_dim:
        image = image[..., None]

    image = np.where(mask[..., None], image, 0)

    filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
    filter_h_i, filter_w_i = math.ceil(filter_h_f) + 1, math.ceil(filter_w_f) + 1
    filter_size = filter_h_i * filter_w_i
    padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
    
    # Window the original mask and uv (non-copy)
    uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
    indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
    padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
    padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
    padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
    padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
    padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
    padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
    windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
    windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
    windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))

    # Gather the target pixels's local window
    target_center = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
    target_lefttop = target_center - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
    target_bottomright = target_center + np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
    target_window = np.floor(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)

    target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size)                          # (target_height, tgt_width, 2, filter_size)
    target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size)     # (..., target_height, tgt_width, filter_size)
    target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size)                      # (target_height, tgt_width, filter_size)

    # Compute pixel area in the local windows
    target_window_lefttop = np.maximum(target_window_centers - 0.5, target_lefttop[..., None])
    target_window_bottomright = np.minimum(target_window_centers + 0.5, target_bottomright[..., None])
    target_window_area = (target_window_bottomright - target_window_lefttop).clip(0, None)
    target_window_area = np.where(target_window_mask, target_window_area[..., 0, :] * target_window_area[..., 1, :], 0)
    
    # Weighted sum by area
    target_window_image = image.reshape(*image.shape[:-3], height * width, -1)[..., target_window_indices, :].swapaxes(-2, -1)
    target_mask = np.sum(target_window_area, axis=-1) >= 0.25
    target_image = weighted_mean_numpy(target_window_image, target_window_area[..., None, :], axis=-1)
    
    if omit_channel_dim:
        target_image = target_image[..., 0]

    return target_image, target_mask


def norm3d(x: np.ndarray) -> np.ndarray:
    "Faster `np.linalg.norm(x, axis=-1)` for 3D vectors"
    return np.sqrt(np.square(x[..., 0]) + np.square(x[..., 1]) + np.square(x[..., 2]))
    

def depth_occlusion_edge_numpy(depth: np.ndarray, mask: np.ndarray, thickness: int = 1, tol: float = 0.1):
    disp = np.where(mask, 1 / depth, 0)
    disp_pad = np.pad(disp, (thickness, thickness), constant_values=0)
    mask_pad = np.pad(mask, (thickness, thickness), constant_values=False)
    kernel_size = 2 * thickness + 1
    disp_window = utils3d.numpy.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, axis=(-2, -1))  # [..., H, W, kernel_size ** 2]
    mask_window = utils3d.numpy.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, axis=(-2, -1))  # [..., H, W, kernel_size ** 2]

    disp_mean = weighted_mean_numpy(disp_window, mask_window, axis=(-2, -1))
    fg_edge_mask = mask & (disp > (1 + tol) * disp_mean)
    bg_edge_mask = mask & (disp_mean > (1 + tol) * disp)

    edge_mask = (cv2.dilate(fg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0) \
        & (cv2.dilate(bg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0)

    return edge_mask


def disk_kernel(radius: int) -> np.ndarray:
    """
    Generate disk kernel with given radius.
    
    Args:
        radius (int): Radius of the disk (in pixels).
    
    Returns:
        np.ndarray: (2*radius+1, 2*radius+1) normalized convolution kernel.
    """
    # Create coordinate grid centered at (0,0)
    L = np.arange(-radius, radius + 1)
    X, Y = np.meshgrid(L, L)
    # Generate disk: region inside circle with radius R is 1
    kernel = ((X**2 + Y**2) <= radius**2).astype(np.float32)
    # Normalize the kernel
    kernel /= np.sum(kernel)
    return kernel


def disk_blur(image: np.ndarray, radius: int) -> np.ndarray:
    """
    Apply disk blur to an image using FFT convolution.

    Args:
        image (np.ndarray): Input image, can be grayscale or color.
        radius (int): Blur radius (in pixels).

    Returns:
        np.ndarray: Blurred image.
    """
    if radius == 0:
        return image
    kernel = disk_kernel(radius)
    if image.ndim == 2:
        blurred = fftconvolve(image, kernel, mode='same')
    elif image.ndim == 3:
        channels = []
        for i in range(image.shape[2]):
            blurred_channel = fftconvolve(image[..., i], kernel, mode='same')
            channels.append(blurred_channel)
        blurred = np.stack(channels, axis=-1)
    else:
        raise ValueError("Image must be 2D or 3D.")
    return blurred


def depth_of_field(
    img: np.ndarray, 
    disp: np.ndarray, 
    focus_disp : float, 
    max_blur_radius : int = 10,
) -> np.ndarray:
    """
    Apply depth of field effect to an image.

    Args:
        img (numpy.ndarray): (H, W, 3) input image.
        depth (numpy.ndarray): (H, W) depth map of the scene.
        focus_depth (float): Focus depth of the lens.
        strength (float): Strength of the depth of field effect.
        max_blur_radius (int): Maximum blur radius (in pixels).
        
    Returns:
        numpy.ndarray: (H, W, 3) output image with depth of field effect applied.
    """
    # Precalculate dialated depth map for each blur radius
    max_disp = np.max(disp)
    disp = disp / max_disp
    focus_disp = focus_disp / max_disp
    dilated_disp = []
    for radius in range(max_blur_radius + 1):
        dilated_disp.append(cv2.dilate(disp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1)), iterations=1))
        
    # Determine the blur radius for each pixel based on the depth map
    blur_radii = np.clip(abs(disp - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32)
    for radius in range(max_blur_radius + 1):
        dialted_blur_radii = np.clip(abs(dilated_disp[radius] - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32)
        mask = (dialted_blur_radii >= radius) & (dialted_blur_radii >= blur_radii) & (dilated_disp[radius] > disp)
        blur_radii[mask] = dialted_blur_radii[mask]
    blur_radii = np.clip(blur_radii, 0, max_blur_radius)
    blur_radii = cv2.blur(blur_radii, (5, 5))

    # Precalculate the blured image for each blur radius
    unique_radii = np.unique(blur_radii)
    precomputed = {}
    for radius in range(max_blur_radius + 1):
        if radius not in unique_radii:
            continue
        precomputed[radius] = disk_blur(img, radius)
        
    # Composit the blured image for each pixel
    output = np.zeros_like(img)
    for r in unique_radii:
        mask = blur_radii == r
        output[mask] = precomputed[r][mask]
        
    return output