Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,323 Bytes
a51c6d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
from typing import *
from functools import partial
import math
import cv2
import numpy as np
from scipy.signal import fftconvolve
import numpy as np
import utils3d
from .tools import timeit
def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
if w is None:
return np.mean(x, axis=axis)
else:
w = w.astype(x.dtype)
return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None)
def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray:
if w is None:
return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis)
else:
w = w.astype(x.dtype)
return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps)
def normalized_view_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray:
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
if aspect_ratio is None:
aspect_ratio = width / height
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5
u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype)
v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype)
u, v = np.meshgrid(u, v, indexing='xy')
uv = np.stack([u, v], axis=-1)
return uv
def focal_to_fov_numpy(focal: np.ndarray):
return 2 * np.arctan(0.5 / focal)
def fov_to_focal_numpy(fov: np.ndarray):
return 0.5 / np.tan(fov / 2)
def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0])
fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1])
return fov_x, fov_y
def point_map_to_depth_legacy_numpy(points: np.ndarray):
height, width = points.shape[-3:-1]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = normalized_view_plane_uv_numpy(width, height, dtype=points.dtype) # (H, W, 2)
_, uv = np.broadcast_arrays(points[..., :2], uv)
# Solve least squares problem
b = (uv * points[..., 2:]).reshape(*points.shape[:-3], -1) # (..., H * W * 2)
A = np.stack([points[..., :2], -uv], axis=-1).reshape(*points.shape[:-3], -1, 2) # (..., H * W * 2, 2)
M = A.swapaxes(-2, -1) @ A
solution = (np.linalg.inv(M + 1e-6 * np.eye(2)) @ (A.swapaxes(-2, -1) @ b[..., None])).squeeze(-1)
focal, shift = solution
depth = points[..., 2] + shift[..., None, None]
fov_x = np.arctan(width / diagonal / focal) * 2
fov_y = np.arctan(height / diagonal / focal) * 2
return depth, fov_x, fov_y, shift
def solve_optimal_focal_shift(uv: np.ndarray, xyz: np.ndarray):
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal"
from scipy.optimize import least_squares
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
xy_proj = xy / (z + shift)[: , None]
f = (xy_proj * uv).sum() / np.square(xy_proj).sum()
err = (f * xy_proj - uv).ravel()
return err
solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm')
optim_shift = solution['x'].squeeze().astype(np.float32)
xy_proj = xy / (z + optim_shift)[: , None]
optim_focal = (xy_proj * uv).sum() / np.square(xy_proj).sum()
return optim_shift, optim_focal
def solve_optimal_shift(uv: np.ndarray, xyz: np.ndarray, focal: float):
"Solve `min |focal * xy / (z + shift) - uv|` with respect to shift"
from scipy.optimize import least_squares
uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1)
def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray):
xy_proj = xy / (z + shift)[: , None]
err = (focal * xy_proj - uv).ravel()
return err
solution = least_squares(partial(fn, uv, xy, z), x0=0, ftol=1e-3, method='lm')
optim_shift = solution['x'].squeeze().astype(np.float32)
return optim_shift
def recover_focal_shift_numpy(points: np.ndarray, mask: np.ndarray = None, focal: float = None, downsample_size: Tuple[int, int] = (64, 64)):
import cv2
assert points.shape[-1] == 3, "Points should (H, W, 3)"
height, width = points.shape[-3], points.shape[-2]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = normalized_view_plane_uv_numpy(width=width, height=height)
if mask is None:
points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3)
uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2)
else:
(points_lr, uv_lr), mask_lr = mask_aware_nearest_resize_numpy((points, uv), mask, downsample_size)
if points_lr.size < 2:
return 1., 0.
if focal is None:
focal, shift = solve_optimal_focal_shift(uv_lr, points_lr)
else:
shift = solve_optimal_shift(uv_lr, points_lr, focal)
return focal, shift
def mask_aware_nearest_resize_numpy(
inputs: Union[np.ndarray, Tuple[np.ndarray, ...], None],
mask: np.ndarray,
size: Tuple[int, int],
return_index: bool = False
) -> Tuple[Union[np.ndarray, Tuple[np.ndarray, ...], None], np.ndarray, Tuple[np.ndarray, ...]]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `inputs`: a single or a list of input 2D map(s) of shape (..., H, W, ...).
- `mask`: input 2D mask of shape (..., H, W)
- `size`: target size (width, height)
### Returns
- `*resized_maps`: resized map(s) of shape (..., target_height, target_width, ...).
- `resized_mask`: mask of the resized map of shape (..., target_height, target_width)
- `nearest_idx`: if return_index is True, nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension.
"""
height, width = mask.shape[-2:]
target_width, target_height = size
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
# Window the original mask and uv
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))
# Gather the target pixels's local window
target_centers = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
target_lefttop = target_centers - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
target_window = np.round(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)
target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(*([-1] * (mask.ndim - 2)), target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
# Compute nearest neighbor in the local window for each pixel
dist = np.square(target_window_centers - target_centers[..., None])
dist = dist[..., 0, :] + dist[..., 1, :]
dist = np.where(target_window_mask, dist, np.inf) # (..., target_height, tgt_width, filter_size)
nearest_in_window = np.argmin(dist, axis=-1, keepdims=True) # (..., target_height, tgt_width, 1)
nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1) # (..., target_height, tgt_width)
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
target_mask = np.any(target_window_mask, axis=-1)
batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])]
index = (*batch_indices, nearest_i, nearest_j)
if inputs is None:
outputs = None
elif isinstance(inputs, np.ndarray):
outputs = inputs[index]
elif isinstance(inputs, Sequence):
outputs = tuple(x[index] for x in inputs)
else:
raise ValueError(f'Invalid input type: {type(inputs)}')
if return_index:
return outputs, target_mask, index
else:
return outputs, target_mask
def mask_aware_area_resize_numpy(image: np.ndarray, mask: np.ndarray, target_width: int, target_height: int) -> Tuple[Tuple[np.ndarray, ...], np.ndarray]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `image`: Input 2D image of shape (..., H, W, C)
- `mask`: Input 2D mask of shape (..., H, W)
- `target_width`: target width of the resized map
- `target_height`: target height of the resized map
### Returns
- `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width).
- `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
"""
height, width = mask.shape[-2:]
if image.shape[-2:] == (height, width):
omit_channel_dim = True
else:
omit_channel_dim = False
if omit_channel_dim:
image = image[..., None]
image = np.where(mask[..., None], image, 0)
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f) + 1, math.ceil(filter_w_f) + 1
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = filter_h_i // 2 + 1, filter_w_i // 2 + 1
# Window the original mask and uv (non-copy)
uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32)
indices = np.arange(height * width, dtype=np.int32).reshape(height, width)
padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1))
windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1))
windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1))
# Gather the target pixels's local window
target_center = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32)
target_lefttop = target_center - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
target_bottomright = target_center + np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32)
target_window = np.floor(target_lefttop).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32)
target_window_centers = windowed_uv[target_window[..., 1], target_window[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_window[..., 1], target_window[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_window[..., 1], target_window[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
# Compute pixel area in the local windows
target_window_lefttop = np.maximum(target_window_centers - 0.5, target_lefttop[..., None])
target_window_bottomright = np.minimum(target_window_centers + 0.5, target_bottomright[..., None])
target_window_area = (target_window_bottomright - target_window_lefttop).clip(0, None)
target_window_area = np.where(target_window_mask, target_window_area[..., 0, :] * target_window_area[..., 1, :], 0)
# Weighted sum by area
target_window_image = image.reshape(*image.shape[:-3], height * width, -1)[..., target_window_indices, :].swapaxes(-2, -1)
target_mask = np.sum(target_window_area, axis=-1) >= 0.25
target_image = weighted_mean_numpy(target_window_image, target_window_area[..., None, :], axis=-1)
if omit_channel_dim:
target_image = target_image[..., 0]
return target_image, target_mask
def norm3d(x: np.ndarray) -> np.ndarray:
"Faster `np.linalg.norm(x, axis=-1)` for 3D vectors"
return np.sqrt(np.square(x[..., 0]) + np.square(x[..., 1]) + np.square(x[..., 2]))
def depth_occlusion_edge_numpy(depth: np.ndarray, mask: np.ndarray, thickness: int = 1, tol: float = 0.1):
disp = np.where(mask, 1 / depth, 0)
disp_pad = np.pad(disp, (thickness, thickness), constant_values=0)
mask_pad = np.pad(mask, (thickness, thickness), constant_values=False)
kernel_size = 2 * thickness + 1
disp_window = utils3d.numpy.sliding_window_2d(disp_pad, (kernel_size, kernel_size), 1, axis=(-2, -1)) # [..., H, W, kernel_size ** 2]
mask_window = utils3d.numpy.sliding_window_2d(mask_pad, (kernel_size, kernel_size), 1, axis=(-2, -1)) # [..., H, W, kernel_size ** 2]
disp_mean = weighted_mean_numpy(disp_window, mask_window, axis=(-2, -1))
fg_edge_mask = mask & (disp > (1 + tol) * disp_mean)
bg_edge_mask = mask & (disp_mean > (1 + tol) * disp)
edge_mask = (cv2.dilate(fg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0) \
& (cv2.dilate(bg_edge_mask.astype(np.uint8), np.ones((3, 3), dtype=np.uint8), iterations=thickness) > 0)
return edge_mask
def disk_kernel(radius: int) -> np.ndarray:
"""
Generate disk kernel with given radius.
Args:
radius (int): Radius of the disk (in pixels).
Returns:
np.ndarray: (2*radius+1, 2*radius+1) normalized convolution kernel.
"""
# Create coordinate grid centered at (0,0)
L = np.arange(-radius, radius + 1)
X, Y = np.meshgrid(L, L)
# Generate disk: region inside circle with radius R is 1
kernel = ((X**2 + Y**2) <= radius**2).astype(np.float32)
# Normalize the kernel
kernel /= np.sum(kernel)
return kernel
def disk_blur(image: np.ndarray, radius: int) -> np.ndarray:
"""
Apply disk blur to an image using FFT convolution.
Args:
image (np.ndarray): Input image, can be grayscale or color.
radius (int): Blur radius (in pixels).
Returns:
np.ndarray: Blurred image.
"""
if radius == 0:
return image
kernel = disk_kernel(radius)
if image.ndim == 2:
blurred = fftconvolve(image, kernel, mode='same')
elif image.ndim == 3:
channels = []
for i in range(image.shape[2]):
blurred_channel = fftconvolve(image[..., i], kernel, mode='same')
channels.append(blurred_channel)
blurred = np.stack(channels, axis=-1)
else:
raise ValueError("Image must be 2D or 3D.")
return blurred
def depth_of_field(
img: np.ndarray,
disp: np.ndarray,
focus_disp : float,
max_blur_radius : int = 10,
) -> np.ndarray:
"""
Apply depth of field effect to an image.
Args:
img (numpy.ndarray): (H, W, 3) input image.
depth (numpy.ndarray): (H, W) depth map of the scene.
focus_depth (float): Focus depth of the lens.
strength (float): Strength of the depth of field effect.
max_blur_radius (int): Maximum blur radius (in pixels).
Returns:
numpy.ndarray: (H, W, 3) output image with depth of field effect applied.
"""
# Precalculate dialated depth map for each blur radius
max_disp = np.max(disp)
disp = disp / max_disp
focus_disp = focus_disp / max_disp
dilated_disp = []
for radius in range(max_blur_radius + 1):
dilated_disp.append(cv2.dilate(disp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1)), iterations=1))
# Determine the blur radius for each pixel based on the depth map
blur_radii = np.clip(abs(disp - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32)
for radius in range(max_blur_radius + 1):
dialted_blur_radii = np.clip(abs(dilated_disp[radius] - focus_disp) * max_blur_radius, 0, max_blur_radius).astype(np.int32)
mask = (dialted_blur_radii >= radius) & (dialted_blur_radii >= blur_radii) & (dilated_disp[radius] > disp)
blur_radii[mask] = dialted_blur_radii[mask]
blur_radii = np.clip(blur_radii, 0, max_blur_radius)
blur_radii = cv2.blur(blur_radii, (5, 5))
# Precalculate the blured image for each blur radius
unique_radii = np.unique(blur_radii)
precomputed = {}
for radius in range(max_blur_radius + 1):
if radius not in unique_radii:
continue
precomputed[radius] = disk_blur(img, radius)
# Composit the blured image for each pixel
output = np.zeros_like(img)
for r in unique_radii:
mask = blur_radii == r
output[mask] = precomputed[r][mask]
return output
|