Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from pathlib import Path | |
import json | |
import time | |
import random | |
from typing import * | |
import traceback | |
import itertools | |
from numbers import Number | |
import io | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import torch | |
import torchvision.transforms.v2.functional as TF | |
import utils3d | |
from tqdm import tqdm | |
from ..utils import pipeline | |
from ..utils.io import * | |
from ..utils.geometry_numpy import mask_aware_nearest_resize_numpy, harmonic_mean_numpy, norm3d, depth_occlusion_edge_numpy, depth_of_field | |
class TrainDataLoaderPipeline: | |
def __init__(self, config: dict, batch_size: int, num_load_workers: int = 4, num_process_workers: int = 8, buffer_size: int = 8): | |
self.config = config | |
self.batch_size = batch_size | |
self.clamp_max_depth = config['clamp_max_depth'] | |
self.fov_range_absolute = config.get('fov_range_absolute', 0.0) | |
self.fov_range_relative = config.get('fov_range_relative', 0.0) | |
self.center_augmentation = config.get('center_augmentation', 0.0) | |
self.image_augmentation = config.get('image_augmentation', []) | |
self.depth_interpolation = config.get('depth_interpolation', 'bilinear') | |
if 'image_sizes' in config: | |
self.image_size_strategy = 'fixed' | |
self.image_sizes = config['image_sizes'] | |
elif 'aspect_ratio_range' in config and 'area_range' in config: | |
self.image_size_strategy = 'aspect_area' | |
self.aspect_ratio_range = config['aspect_ratio_range'] | |
self.area_range = config['area_range'] | |
else: | |
raise ValueError('Invalid image size configuration') | |
# Load datasets | |
self.datasets = {} | |
for dataset in tqdm(config['datasets'], desc='Loading datasets'): | |
name = dataset['name'] | |
content = Path(dataset['path'], dataset.get('index', '.index.txt')).joinpath().read_text() | |
filenames = content.splitlines() | |
self.datasets[name] = { | |
**dataset, | |
'path': dataset['path'], | |
'filenames': filenames, | |
} | |
self.dataset_names = [dataset['name'] for dataset in config['datasets']] | |
self.dataset_weights = [dataset['weight'] for dataset in config['datasets']] | |
# Build pipeline | |
self.pipeline = pipeline.Sequential([ | |
self._sample_batch, | |
pipeline.Unbatch(), | |
pipeline.Parallel([self._load_instance] * num_load_workers), | |
pipeline.Parallel([self._process_instance] * num_process_workers), | |
pipeline.Batch(self.batch_size), | |
self._collate_batch, | |
pipeline.Buffer(buffer_size), | |
]) | |
self.invalid_instance = { | |
'intrinsics': np.array([[1.0, 0.0, 0.5], [0.0, 1.0, 0.5], [0.0, 0.0, 1.0]], dtype=np.float32), | |
'image': np.zeros((256, 256, 3), dtype=np.uint8), | |
'depth': np.ones((256, 256), dtype=np.float32), | |
'depth_mask': np.ones((256, 256), dtype=bool), | |
'depth_mask_inf': np.zeros((256, 256), dtype=bool), | |
'label_type': 'invalid', | |
} | |
def _sample_batch(self): | |
batch_id = 0 | |
last_area = None | |
while True: | |
# Depending on the sample strategy, choose a dataset and a filename | |
batch_id += 1 | |
batch = [] | |
# Sample instances | |
for _ in range(self.batch_size): | |
dataset_name = random.choices(self.dataset_names, weights=self.dataset_weights)[0] | |
filename = random.choice(self.datasets[dataset_name]['filenames']) | |
path = Path(self.datasets[dataset_name]['path'], filename) | |
instance = { | |
'batch_id': batch_id, | |
'seed': random.randint(0, 2 ** 32 - 1), | |
'dataset': dataset_name, | |
'filename': filename, | |
'path': path, | |
'label_type': self.datasets[dataset_name]['label_type'], | |
} | |
batch.append(instance) | |
# Decide the image size for this batch | |
if self.image_size_strategy == 'fixed': | |
width, height = random.choice(self.config['image_sizes']) | |
elif self.image_size_strategy == 'aspect_area': | |
area = random.uniform(*self.area_range) | |
aspect_ratio_ranges = [self.datasets[instance['dataset']].get('aspect_ratio_range', self.aspect_ratio_range) for instance in batch] | |
aspect_ratio_range = (min(r[0] for r in aspect_ratio_ranges), max(r[1] for r in aspect_ratio_ranges)) | |
aspect_ratio = random.uniform(*aspect_ratio_range) | |
width, height = int((area * aspect_ratio) ** 0.5), int((area / aspect_ratio) ** 0.5) | |
else: | |
raise ValueError('Invalid image size strategy') | |
for instance in batch: | |
instance['width'], instance['height'] = width, height | |
yield batch | |
def _load_instance(self, instance: dict): | |
try: | |
image = read_image(Path(instance['path'], 'image.jpg')) | |
depth, _ = read_depth(Path(instance['path'], self.datasets[instance['dataset']].get('depth', 'depth.png'))) | |
meta = read_meta(Path(instance['path'], 'meta.json')) | |
intrinsics = np.array(meta['intrinsics'], dtype=np.float32) | |
depth_mask = np.isfinite(depth) | |
depth_mask_inf = np.isinf(depth) | |
depth = np.nan_to_num(depth, nan=1, posinf=1, neginf=1) | |
data = { | |
'image': image, | |
'depth': depth, | |
'depth_mask': depth_mask, | |
'depth_mask_inf': depth_mask_inf, | |
'intrinsics': intrinsics | |
} | |
instance.update({ | |
**data, | |
}) | |
except Exception as e: | |
print(f"Failed to load instance {instance['dataset']}/{instance['filename']} because of exception:", e) | |
instance.update(self.invalid_instance) | |
return instance | |
def _process_instance(self, instance: Dict[str, Union[np.ndarray, str, float, bool]]): | |
image, depth, depth_mask, depth_mask_inf, intrinsics, label_type = instance['image'], instance['depth'], instance['depth_mask'], instance['depth_mask_inf'], instance['intrinsics'], instance['label_type'] | |
depth_unit = self.datasets[instance['dataset']].get('depth_unit', None) | |
raw_height, raw_width = image.shape[:2] | |
raw_horizontal, raw_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1]) | |
raw_fov_x, raw_fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics) | |
raw_pixel_w, raw_pixel_h = raw_horizontal / raw_width, raw_vertical / raw_height | |
tgt_width, tgt_height = instance['width'], instance['height'] | |
tgt_aspect = tgt_width / tgt_height | |
rng = np.random.default_rng(instance['seed']) | |
# 1. set target fov | |
center_augmentation = self.datasets[instance['dataset']].get('center_augmentation', self.center_augmentation) | |
fov_range_absolute_min, fov_range_absolute_max = self.datasets[instance['dataset']].get('fov_range_absolute', self.fov_range_absolute) | |
fov_range_relative_min, fov_range_relative_max = self.datasets[instance['dataset']].get('fov_range_relative', self.fov_range_relative) | |
tgt_fov_x_min = min(fov_range_relative_min * raw_fov_x, fov_range_relative_min * utils3d.focal_to_fov(utils3d.fov_to_focal(raw_fov_y) / tgt_aspect)) | |
tgt_fov_x_max = min(fov_range_relative_max * raw_fov_x, fov_range_relative_max * utils3d.focal_to_fov(utils3d.fov_to_focal(raw_fov_y) / tgt_aspect)) | |
tgt_fov_x_min, tgt_fov_x_max = max(np.deg2rad(fov_range_absolute_min), tgt_fov_x_min), min(np.deg2rad(fov_range_absolute_max), tgt_fov_x_max) | |
tgt_fov_x = rng.uniform(min(tgt_fov_x_min, tgt_fov_x_max), tgt_fov_x_max) | |
tgt_fov_y = utils3d.focal_to_fov(utils3d.numpy.fov_to_focal(tgt_fov_x) * tgt_aspect) | |
# 2. set target image center (principal point) and the corresponding z-direction in raw camera space | |
center_dtheta = center_augmentation * rng.uniform(-0.5, 0.5) * (raw_fov_x - tgt_fov_x) | |
center_dphi = center_augmentation * rng.uniform(-0.5, 0.5) * (raw_fov_y - tgt_fov_y) | |
cu, cv = 0.5 + 0.5 * np.tan(center_dtheta) / np.tan(raw_fov_x / 2), 0.5 + 0.5 * np.tan(center_dphi) / np.tan(raw_fov_y / 2) | |
direction = utils3d.unproject_cv(np.array([[cu, cv]], dtype=np.float32), np.array([1.0], dtype=np.float32), intrinsics=intrinsics)[0] | |
# 3. obtain the rotation matrix for homography warping | |
R = utils3d.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32)) | |
# 4. shrink the target view to fit into the warped image | |
corners = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32) | |
corners = np.concatenate([corners, np.ones((4, 1), dtype=np.float32)], axis=1) @ (np.linalg.inv(intrinsics).T @ R.T) # corners in viewport's camera plane | |
corners = corners[:, :2] / corners[:, 2:3] | |
tgt_horizontal, tgt_vertical = np.tan(tgt_fov_x / 2) * 2, np.tan(tgt_fov_y / 2) * 2 | |
warp_horizontal, warp_vertical = float('inf'), float('inf') | |
for i in range(4): | |
intersection, _ = utils3d.numpy.ray_intersection( | |
np.array([0., 0.]), np.array([[tgt_aspect, 1.0], [tgt_aspect, -1.0]]), | |
corners[i - 1], corners[i] - corners[i - 1], | |
) | |
warp_horizontal, warp_vertical = min(warp_horizontal, 2 * np.abs(intersection[:, 0]).min()), min(warp_vertical, 2 * np.abs(intersection[:, 1]).min()) | |
tgt_horizontal, tgt_vertical = min(tgt_horizontal, warp_horizontal), min(tgt_vertical, warp_vertical) | |
# 5. obtain the target intrinsics | |
fx, fy = 1 / tgt_horizontal, 1 / tgt_vertical | |
tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32) | |
# 6. do homogeneous transformation | |
# 6.1 The image and depth are resized first to approximately the same pixel size as the target image with PIL's antialiasing resampling | |
tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height # (should be exactly the same for x and y axes) | |
rescaled_w, rescaled_h = int(raw_width * raw_pixel_w / tgt_pixel_w), int(raw_height * raw_pixel_h / tgt_pixel_h) | |
image = np.array(Image.fromarray(image).resize((rescaled_w, rescaled_h), Image.Resampling.LANCZOS)) | |
edge_mask = depth_occlusion_edge_numpy(depth, mask=depth_mask, thickness=2, tol=0.01) | |
_, depth_mask_nearest, resize_index = mask_aware_nearest_resize_numpy(None, depth_mask, (rescaled_w, rescaled_h), return_index=True) | |
depth_nearest = depth[resize_index] | |
distance_nearest = norm3d(utils3d.numpy.depth_to_points(depth_nearest, intrinsics=intrinsics)) | |
edge_mask = edge_mask[resize_index] | |
if self.depth_interpolation == 'bilinear': | |
depth_mask_bilinear = cv2.resize(depth_mask.astype(np.float32), (rescaled_w, rescaled_h), interpolation=cv2.INTER_LINEAR) | |
depth_bilinear = 1 / cv2.resize(1 / depth, (rescaled_w, rescaled_h), interpolation=cv2.INTER_LINEAR) | |
distance_bilinear = norm3d(utils3d.numpy.depth_to_points(depth_bilinear, intrinsics=intrinsics)) | |
depth_mask_inf = cv2.resize(depth_mask_inf.astype(np.uint8), (rescaled_w, rescaled_h), interpolation=cv2.INTER_NEAREST) > 0 | |
# 6.2 calculate homography warping | |
transform = intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics) | |
uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height) | |
pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T | |
uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12) | |
pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=rescaled_w, height=rescaled_h).astype(np.float32) | |
tgt_image = cv2.remap(image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LANCZOS4) | |
tgt_ray_length = norm3d(utils3d.numpy.unproject_cv(uv_tgt, np.ones_like(uv_tgt[:, :, 0]), intrinsics=tgt_intrinsics)) | |
tgt_depth_mask_nearest = cv2.remap(depth_mask_nearest.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0 | |
tgt_depth_nearest = cv2.remap(distance_nearest, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) / tgt_ray_length | |
tgt_edge_mask = cv2.remap(edge_mask.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0 | |
if self.depth_interpolation == 'bilinear': | |
tgt_depth_mask_bilinear = cv2.remap(depth_mask_bilinear, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR) | |
tgt_depth_bilinear = cv2.remap(distance_bilinear, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR) / tgt_ray_length | |
tgt_depth = np.where((tgt_depth_mask_bilinear == 1) & ~tgt_edge_mask, tgt_depth_bilinear, tgt_depth_nearest) | |
else: | |
tgt_depth = tgt_depth_nearest | |
tgt_depth_mask = tgt_depth_mask_nearest | |
tgt_depth_mask_inf = cv2.remap(depth_mask_inf.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0 | |
# always make sure that mask is not empty | |
if tgt_depth_mask.sum() / tgt_depth_mask.size < 0.001: | |
tgt_depth_mask = np.ones_like(tgt_depth_mask) | |
tgt_depth = np.ones_like(tgt_depth) | |
instance['label_type'] = 'invalid' | |
# Flip augmentation | |
if rng.choice([True, False]): | |
tgt_image = np.flip(tgt_image, axis=1).copy() | |
tgt_depth = np.flip(tgt_depth, axis=1).copy() | |
tgt_depth_mask = np.flip(tgt_depth_mask, axis=1).copy() | |
tgt_depth_mask_inf = np.flip(tgt_depth_mask_inf, axis=1).copy() | |
# Color augmentation | |
image_augmentation = self.datasets[instance['dataset']].get('image_augmentation', self.image_augmentation) | |
if 'jittering' in image_augmentation: | |
tgt_image = torch.from_numpy(tgt_image).permute(2, 0, 1) | |
tgt_image = TF.adjust_brightness(tgt_image, rng.uniform(0.7, 1.3)) | |
tgt_image = TF.adjust_contrast(tgt_image, rng.uniform(0.7, 1.3)) | |
tgt_image = TF.adjust_saturation(tgt_image, rng.uniform(0.7, 1.3)) | |
tgt_image = TF.adjust_hue(tgt_image, rng.uniform(-0.1, 0.1)) | |
tgt_image = TF.adjust_gamma(tgt_image, rng.uniform(0.7, 1.3)) | |
tgt_image = tgt_image.permute(1, 2, 0).numpy() | |
if 'dof' in image_augmentation: | |
if rng.uniform() < 0.5: | |
dof_strength = rng.integers(12) | |
tgt_disp = np.where(tgt_depth_mask_inf, 0, 1 / tgt_depth) | |
disp_min, disp_max = tgt_disp[tgt_depth_mask].min(), tgt_disp[tgt_depth_mask].max() | |
tgt_disp = cv2.inpaint(tgt_disp, (~tgt_depth_mask & ~tgt_depth_mask_inf).astype(np.uint8), 3, cv2.INPAINT_TELEA).clip(disp_min, disp_max) | |
dof_focus = rng.uniform(disp_min, disp_max) | |
tgt_image = depth_of_field(tgt_image, tgt_disp, dof_focus, dof_strength) | |
if 'shot_noise' in image_augmentation: | |
if rng.uniform() < 0.5: | |
k = np.exp(rng.uniform(np.log(100), np.log(10000))) / 255 | |
tgt_image = (rng.poisson(tgt_image * k) / k).clip(0, 255).astype(np.uint8) | |
if 'jpeg_loss' in image_augmentation: | |
if rng.uniform() < 0.5: | |
tgt_image = cv2.imdecode(cv2.imencode('.jpg', tgt_image, [cv2.IMWRITE_JPEG_QUALITY, rng.integers(20, 100)])[1], cv2.IMREAD_COLOR) | |
if 'blurring' in image_augmentation: | |
if rng.uniform() < 0.5: | |
ratio = rng.uniform(0.25, 1) | |
tgt_image = cv2.resize(cv2.resize(tgt_image, (int(tgt_width * ratio), int(tgt_height * ratio)), interpolation=cv2.INTER_AREA), (tgt_width, tgt_height), interpolation=rng.choice([cv2.INTER_LINEAR_EXACT, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4])) | |
# convert depth to metric if necessary | |
if depth_unit is not None: | |
tgt_depth *= depth_unit | |
instance['is_metric'] = True | |
else: | |
instance['is_metric'] = False | |
# clamp depth maximum values | |
max_depth = np.nanquantile(np.where(tgt_depth_mask, tgt_depth, np.nan), 0.01) * self.clamp_max_depth | |
tgt_depth = np.clip(tgt_depth, 0, max_depth) | |
tgt_depth = np.nan_to_num(tgt_depth, nan=1.0) | |
if self.datasets[instance['dataset']].get('finite_depth_mask', None) == "only_known": | |
tgt_depth_mask_fin = tgt_depth_mask | |
else: | |
tgt_depth_mask_fin = ~tgt_depth_mask_inf | |
instance.update({ | |
'image': torch.from_numpy(tgt_image.astype(np.float32) / 255.0).permute(2, 0, 1), | |
'depth': torch.from_numpy(tgt_depth).float(), | |
'depth_mask': torch.from_numpy(tgt_depth_mask).bool(), | |
'depth_mask_fin': torch.from_numpy(tgt_depth_mask_fin).bool(), | |
'depth_mask_inf': torch.from_numpy(tgt_depth_mask_inf).bool(), | |
'intrinsics': torch.from_numpy(tgt_intrinsics).float(), | |
}) | |
return instance | |
def _collate_batch(self, instances: List[Dict[str, Any]]): | |
batch = {k: torch.stack([instance[k] for instance in instances], dim=0) for k in ['image', 'depth', 'depth_mask', 'depth_mask_fin', 'depth_mask_inf', 'intrinsics']} | |
batch = { | |
'label_type': [instance['label_type'] for instance in instances], | |
'is_metric': [instance['is_metric'] for instance in instances], | |
'info': [{'dataset': instance['dataset'], 'filename': instance['filename']} for instance in instances], | |
**batch, | |
} | |
return batch | |
def get(self) -> Dict[str, Union[torch.Tensor, str]]: | |
return self.pipeline.get() | |
def start(self): | |
self.pipeline.start() | |
def stop(self): | |
self.pipeline.stop() | |
def __enter__(self): | |
self.start() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.pipeline.terminate() | |
self.pipeline.join() | |
return False | |