File size: 18,364 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import os
from pathlib import Path
import json
import time
import random
from typing import *
import traceback
import itertools
from numbers import Number
import io

import numpy as np
import cv2
from PIL import Image
import torch
import torchvision.transforms.v2.functional as TF
import utils3d
from tqdm import tqdm

from ..utils import pipeline
from ..utils.io import *
from ..utils.geometry_numpy import mask_aware_nearest_resize_numpy, harmonic_mean_numpy, norm3d, depth_occlusion_edge_numpy, depth_of_field


class TrainDataLoaderPipeline:
    def __init__(self, config: dict, batch_size: int, num_load_workers: int = 4, num_process_workers: int = 8, buffer_size: int = 8):
        self.config = config

        self.batch_size = batch_size
        self.clamp_max_depth = config['clamp_max_depth']
        self.fov_range_absolute = config.get('fov_range_absolute', 0.0)
        self.fov_range_relative = config.get('fov_range_relative', 0.0)
        self.center_augmentation = config.get('center_augmentation', 0.0)
        self.image_augmentation = config.get('image_augmentation', [])
        self.depth_interpolation = config.get('depth_interpolation', 'bilinear')

        if 'image_sizes' in config:
            self.image_size_strategy = 'fixed'
            self.image_sizes = config['image_sizes']
        elif 'aspect_ratio_range' in config and 'area_range' in config:
            self.image_size_strategy = 'aspect_area'
            self.aspect_ratio_range = config['aspect_ratio_range']
            self.area_range = config['area_range']
        else:
            raise ValueError('Invalid image size configuration')

        # Load datasets
        self.datasets = {}
        for dataset in tqdm(config['datasets'], desc='Loading datasets'):
            name = dataset['name']
            content = Path(dataset['path'], dataset.get('index', '.index.txt')).joinpath().read_text()
            filenames = content.splitlines()
            self.datasets[name] = {
                **dataset,
                'path': dataset['path'],
                'filenames': filenames,
            }
        self.dataset_names = [dataset['name'] for dataset in config['datasets']]
        self.dataset_weights = [dataset['weight'] for dataset in config['datasets']]

        # Build pipeline
        self.pipeline = pipeline.Sequential([
            self._sample_batch,
            pipeline.Unbatch(),
            pipeline.Parallel([self._load_instance] * num_load_workers),
            pipeline.Parallel([self._process_instance] * num_process_workers),
            pipeline.Batch(self.batch_size),
            self._collate_batch,
            pipeline.Buffer(buffer_size),
        ])

        self.invalid_instance = {
            'intrinsics': np.array([[1.0, 0.0, 0.5], [0.0, 1.0, 0.5], [0.0, 0.0, 1.0]], dtype=np.float32),
            'image': np.zeros((256, 256, 3), dtype=np.uint8),
            'depth': np.ones((256, 256), dtype=np.float32),
            'depth_mask': np.ones((256, 256), dtype=bool),
            'depth_mask_inf': np.zeros((256, 256), dtype=bool),
            'label_type': 'invalid',
        }

    def _sample_batch(self):
        batch_id = 0
        last_area = None
        while True:
            # Depending on the sample strategy, choose a dataset and a filename
            batch_id += 1
            batch = []
            
            # Sample instances
            for _ in range(self.batch_size):
                dataset_name = random.choices(self.dataset_names, weights=self.dataset_weights)[0]
                filename = random.choice(self.datasets[dataset_name]['filenames'])

                path = Path(self.datasets[dataset_name]['path'], filename)

                instance = {
                    'batch_id': batch_id,
                    'seed': random.randint(0, 2 ** 32 - 1),
                    'dataset': dataset_name,
                    'filename': filename,
                    'path': path,
                    'label_type': self.datasets[dataset_name]['label_type'],
                }
                batch.append(instance)

            # Decide the image size for this batch
            if self.image_size_strategy == 'fixed':
                width, height = random.choice(self.config['image_sizes'])
            elif self.image_size_strategy == 'aspect_area':
                area = random.uniform(*self.area_range)
                aspect_ratio_ranges = [self.datasets[instance['dataset']].get('aspect_ratio_range', self.aspect_ratio_range) for instance in batch]
                aspect_ratio_range = (min(r[0] for r in aspect_ratio_ranges), max(r[1] for r in aspect_ratio_ranges))
                aspect_ratio = random.uniform(*aspect_ratio_range)
                width, height = int((area * aspect_ratio) ** 0.5), int((area / aspect_ratio) ** 0.5)
            else:
                raise ValueError('Invalid image size strategy')
            
            for instance in batch:
                instance['width'], instance['height'] = width, height
            
            yield batch

    def _load_instance(self, instance: dict):
        try:
            image = read_image(Path(instance['path'], 'image.jpg'))
            depth, _ = read_depth(Path(instance['path'], self.datasets[instance['dataset']].get('depth', 'depth.png')))
            
            meta = read_meta(Path(instance['path'], 'meta.json'))
            intrinsics = np.array(meta['intrinsics'], dtype=np.float32)
            depth_mask = np.isfinite(depth)
            depth_mask_inf = np.isinf(depth)
            depth = np.nan_to_num(depth, nan=1, posinf=1, neginf=1)
            data = {
                'image': image,
                'depth': depth,
                'depth_mask': depth_mask,
                'depth_mask_inf': depth_mask_inf,
                'intrinsics': intrinsics
            }
            instance.update({
                **data,
            })
        except Exception as e:
            print(f"Failed to load instance {instance['dataset']}/{instance['filename']} because of exception:", e)
            instance.update(self.invalid_instance)
        return instance

    def _process_instance(self, instance: Dict[str, Union[np.ndarray, str, float, bool]]):
        image, depth, depth_mask, depth_mask_inf, intrinsics, label_type = instance['image'], instance['depth'], instance['depth_mask'], instance['depth_mask_inf'], instance['intrinsics'], instance['label_type']
        depth_unit = self.datasets[instance['dataset']].get('depth_unit', None)

        raw_height, raw_width = image.shape[:2]
        raw_horizontal, raw_vertical = abs(1.0 / intrinsics[0, 0]), abs(1.0 / intrinsics[1, 1])
        raw_fov_x, raw_fov_y = utils3d.numpy.intrinsics_to_fov(intrinsics)
        raw_pixel_w, raw_pixel_h = raw_horizontal / raw_width, raw_vertical / raw_height
        tgt_width, tgt_height = instance['width'], instance['height']
        tgt_aspect = tgt_width / tgt_height
        
        rng = np.random.default_rng(instance['seed'])

        # 1. set target fov
        center_augmentation = self.datasets[instance['dataset']].get('center_augmentation', self.center_augmentation)
        fov_range_absolute_min, fov_range_absolute_max = self.datasets[instance['dataset']].get('fov_range_absolute', self.fov_range_absolute)
        fov_range_relative_min, fov_range_relative_max = self.datasets[instance['dataset']].get('fov_range_relative', self.fov_range_relative)
        tgt_fov_x_min = min(fov_range_relative_min * raw_fov_x, fov_range_relative_min * utils3d.focal_to_fov(utils3d.fov_to_focal(raw_fov_y) / tgt_aspect))
        tgt_fov_x_max = min(fov_range_relative_max * raw_fov_x, fov_range_relative_max * utils3d.focal_to_fov(utils3d.fov_to_focal(raw_fov_y) / tgt_aspect))
        tgt_fov_x_min, tgt_fov_x_max = max(np.deg2rad(fov_range_absolute_min), tgt_fov_x_min), min(np.deg2rad(fov_range_absolute_max), tgt_fov_x_max)
        tgt_fov_x = rng.uniform(min(tgt_fov_x_min, tgt_fov_x_max), tgt_fov_x_max)
        tgt_fov_y = utils3d.focal_to_fov(utils3d.numpy.fov_to_focal(tgt_fov_x) * tgt_aspect)

        # 2. set target image center (principal point) and the corresponding z-direction in raw camera space
        center_dtheta = center_augmentation * rng.uniform(-0.5, 0.5) * (raw_fov_x - tgt_fov_x)
        center_dphi = center_augmentation * rng.uniform(-0.5, 0.5) * (raw_fov_y - tgt_fov_y)
        cu, cv = 0.5 + 0.5 * np.tan(center_dtheta) / np.tan(raw_fov_x / 2), 0.5 + 0.5 *  np.tan(center_dphi) / np.tan(raw_fov_y / 2)
        direction = utils3d.unproject_cv(np.array([[cu, cv]], dtype=np.float32), np.array([1.0], dtype=np.float32), intrinsics=intrinsics)[0]

        # 3. obtain the rotation matrix for homography warping
        R = utils3d.rotation_matrix_from_vectors(direction, np.array([0, 0, 1], dtype=np.float32))

        # 4. shrink the target view to fit into the warped image
        corners = np.array([[0, 0], [0, 1], [1, 1], [1, 0]], dtype=np.float32)
        corners = np.concatenate([corners, np.ones((4, 1), dtype=np.float32)], axis=1) @ (np.linalg.inv(intrinsics).T @ R.T)   # corners in viewport's camera plane
        corners = corners[:, :2] / corners[:, 2:3]
        tgt_horizontal, tgt_vertical = np.tan(tgt_fov_x / 2) * 2, np.tan(tgt_fov_y / 2) * 2
        warp_horizontal, warp_vertical = float('inf'), float('inf')
        for i in range(4):
            intersection, _ = utils3d.numpy.ray_intersection(
                np.array([0., 0.]), np.array([[tgt_aspect, 1.0], [tgt_aspect, -1.0]]),
                corners[i - 1], corners[i] - corners[i - 1],
            )
            warp_horizontal, warp_vertical = min(warp_horizontal, 2 * np.abs(intersection[:, 0]).min()), min(warp_vertical, 2 * np.abs(intersection[:, 1]).min())
        tgt_horizontal, tgt_vertical = min(tgt_horizontal, warp_horizontal), min(tgt_vertical, warp_vertical)
        
        # 5. obtain the target intrinsics
        fx, fy = 1 / tgt_horizontal, 1 / tgt_vertical
        tgt_intrinsics = utils3d.numpy.intrinsics_from_focal_center(fx, fy, 0.5, 0.5).astype(np.float32)

        # 6. do homogeneous transformation 
        # 6.1 The image and depth are resized first to approximately the same pixel size as the target image with PIL's antialiasing resampling
        tgt_pixel_w, tgt_pixel_h = tgt_horizontal / tgt_width, tgt_vertical / tgt_height        # (should be exactly the same for x and y axes)
        rescaled_w, rescaled_h = int(raw_width * raw_pixel_w / tgt_pixel_w), int(raw_height * raw_pixel_h / tgt_pixel_h)
        image = np.array(Image.fromarray(image).resize((rescaled_w, rescaled_h), Image.Resampling.LANCZOS))

        edge_mask = depth_occlusion_edge_numpy(depth, mask=depth_mask, thickness=2, tol=0.01)
        _, depth_mask_nearest, resize_index = mask_aware_nearest_resize_numpy(None, depth_mask, (rescaled_w, rescaled_h), return_index=True)
        depth_nearest = depth[resize_index]
        distance_nearest = norm3d(utils3d.numpy.depth_to_points(depth_nearest, intrinsics=intrinsics))
        edge_mask = edge_mask[resize_index]

        if self.depth_interpolation == 'bilinear':
            depth_mask_bilinear = cv2.resize(depth_mask.astype(np.float32), (rescaled_w, rescaled_h), interpolation=cv2.INTER_LINEAR)
            depth_bilinear = 1 / cv2.resize(1 / depth, (rescaled_w, rescaled_h), interpolation=cv2.INTER_LINEAR)
            distance_bilinear = norm3d(utils3d.numpy.depth_to_points(depth_bilinear, intrinsics=intrinsics))

        depth_mask_inf = cv2.resize(depth_mask_inf.astype(np.uint8), (rescaled_w, rescaled_h), interpolation=cv2.INTER_NEAREST) > 0

        # 6.2 calculate homography warping
        transform = intrinsics @ np.linalg.inv(R) @ np.linalg.inv(tgt_intrinsics)
        uv_tgt = utils3d.numpy.image_uv(width=tgt_width, height=tgt_height)
        pts = np.concatenate([uv_tgt, np.ones((tgt_height, tgt_width, 1), dtype=np.float32)], axis=-1) @ transform.T
        uv_remap = pts[:, :, :2] / (pts[:, :, 2:3] + 1e-12)
        pixel_remap = utils3d.numpy.uv_to_pixel(uv_remap, width=rescaled_w, height=rescaled_h).astype(np.float32)
        
        tgt_image = cv2.remap(image, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LANCZOS4)
        tgt_ray_length = norm3d(utils3d.numpy.unproject_cv(uv_tgt, np.ones_like(uv_tgt[:, :, 0]), intrinsics=tgt_intrinsics))
        tgt_depth_mask_nearest = cv2.remap(depth_mask_nearest.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0
        tgt_depth_nearest = cv2.remap(distance_nearest, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) / tgt_ray_length
        tgt_edge_mask = cv2.remap(edge_mask.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0
        if self.depth_interpolation == 'bilinear':
            tgt_depth_mask_bilinear = cv2.remap(depth_mask_bilinear, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR)
            tgt_depth_bilinear = cv2.remap(distance_bilinear, pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_LINEAR) / tgt_ray_length
            tgt_depth = np.where((tgt_depth_mask_bilinear == 1) & ~tgt_edge_mask, tgt_depth_bilinear, tgt_depth_nearest)
        else:
            tgt_depth = tgt_depth_nearest
        tgt_depth_mask = tgt_depth_mask_nearest
        
        tgt_depth_mask_inf = cv2.remap(depth_mask_inf.astype(np.uint8), pixel_remap[:, :, 0], pixel_remap[:, :, 1], cv2.INTER_NEAREST) > 0

        # always make sure that mask is not empty
        if tgt_depth_mask.sum() / tgt_depth_mask.size < 0.001:
            tgt_depth_mask = np.ones_like(tgt_depth_mask)
            tgt_depth = np.ones_like(tgt_depth)
            instance['label_type'] = 'invalid'

        # Flip augmentation
        if rng.choice([True, False]):
            tgt_image = np.flip(tgt_image, axis=1).copy()
            tgt_depth = np.flip(tgt_depth, axis=1).copy()
            tgt_depth_mask = np.flip(tgt_depth_mask, axis=1).copy()
            tgt_depth_mask_inf = np.flip(tgt_depth_mask_inf, axis=1).copy()
        
        # Color augmentation
        image_augmentation = self.datasets[instance['dataset']].get('image_augmentation', self.image_augmentation)
        if 'jittering' in image_augmentation:
            tgt_image = torch.from_numpy(tgt_image).permute(2, 0, 1)
            tgt_image = TF.adjust_brightness(tgt_image, rng.uniform(0.7, 1.3))
            tgt_image = TF.adjust_contrast(tgt_image, rng.uniform(0.7, 1.3))
            tgt_image = TF.adjust_saturation(tgt_image, rng.uniform(0.7, 1.3))
            tgt_image = TF.adjust_hue(tgt_image, rng.uniform(-0.1, 0.1))
            tgt_image = TF.adjust_gamma(tgt_image, rng.uniform(0.7, 1.3))
            tgt_image = tgt_image.permute(1, 2, 0).numpy()
        if 'dof' in image_augmentation:
            if rng.uniform() < 0.5:
                dof_strength = rng.integers(12)
                tgt_disp = np.where(tgt_depth_mask_inf, 0, 1 / tgt_depth)
                disp_min, disp_max = tgt_disp[tgt_depth_mask].min(), tgt_disp[tgt_depth_mask].max()
                tgt_disp = cv2.inpaint(tgt_disp, (~tgt_depth_mask & ~tgt_depth_mask_inf).astype(np.uint8), 3, cv2.INPAINT_TELEA).clip(disp_min, disp_max)
                dof_focus = rng.uniform(disp_min, disp_max)
                tgt_image = depth_of_field(tgt_image, tgt_disp, dof_focus, dof_strength)
        if 'shot_noise' in image_augmentation:
            if rng.uniform() < 0.5: 
                k = np.exp(rng.uniform(np.log(100), np.log(10000))) / 255
                tgt_image = (rng.poisson(tgt_image * k) / k).clip(0, 255).astype(np.uint8)
        if 'jpeg_loss' in image_augmentation:
            if rng.uniform() < 0.5: 
                tgt_image = cv2.imdecode(cv2.imencode('.jpg', tgt_image, [cv2.IMWRITE_JPEG_QUALITY, rng.integers(20, 100)])[1], cv2.IMREAD_COLOR)
        if 'blurring' in image_augmentation:
            if rng.uniform() < 0.5:    
                ratio = rng.uniform(0.25, 1)
                tgt_image = cv2.resize(cv2.resize(tgt_image, (int(tgt_width * ratio), int(tgt_height * ratio)), interpolation=cv2.INTER_AREA), (tgt_width, tgt_height), interpolation=rng.choice([cv2.INTER_LINEAR_EXACT, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]))

        # convert depth to metric if necessary
        if depth_unit is not None:
            tgt_depth *= depth_unit
            instance['is_metric'] = True
        else:
            instance['is_metric'] = False

        # clamp depth maximum values
        max_depth = np.nanquantile(np.where(tgt_depth_mask, tgt_depth, np.nan), 0.01) * self.clamp_max_depth
        tgt_depth = np.clip(tgt_depth, 0, max_depth)
        tgt_depth = np.nan_to_num(tgt_depth, nan=1.0)

        if self.datasets[instance['dataset']].get('finite_depth_mask', None) == "only_known":
            tgt_depth_mask_fin = tgt_depth_mask
        else:
            tgt_depth_mask_fin = ~tgt_depth_mask_inf

        instance.update({
            'image': torch.from_numpy(tgt_image.astype(np.float32) / 255.0).permute(2, 0, 1),
            'depth': torch.from_numpy(tgt_depth).float(),
            'depth_mask': torch.from_numpy(tgt_depth_mask).bool(),
            'depth_mask_fin': torch.from_numpy(tgt_depth_mask_fin).bool(),
            'depth_mask_inf': torch.from_numpy(tgt_depth_mask_inf).bool(),
            'intrinsics': torch.from_numpy(tgt_intrinsics).float(),
        })
        
        return instance

    def _collate_batch(self, instances: List[Dict[str, Any]]):
        batch = {k: torch.stack([instance[k] for instance in instances], dim=0) for k in ['image', 'depth', 'depth_mask', 'depth_mask_fin', 'depth_mask_inf', 'intrinsics']}
        batch = {
            'label_type': [instance['label_type'] for instance in instances],
            'is_metric': [instance['is_metric'] for instance in instances],
            'info': [{'dataset': instance['dataset'], 'filename': instance['filename']} for instance in instances],
            **batch,
        }
        return batch
    
    def get(self) -> Dict[str, Union[torch.Tensor, str]]:
        return self.pipeline.get()

    def start(self):
        self.pipeline.start()

    def stop(self):
        self.pipeline.stop()

    def __enter__(self):
        self.start()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.pipeline.terminate()
        self.pipeline.join()
        return False