Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
from numbers import Number | |
import importlib | |
import itertools | |
import functools | |
import sys | |
import torch | |
from torch import Tensor | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .dinov2.models.vision_transformer import DinoVisionTransformer | |
from .utils import wrap_dinov2_attention_with_sdpa, wrap_module_with_gradient_checkpointing, unwrap_module_with_gradient_checkpointing | |
from ..utils.geometry_torch import normalized_view_plane_uv | |
class ResidualConvBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int = None, | |
hidden_channels: int = None, | |
kernel_size: int = 3, | |
padding_mode: str = 'replicate', | |
activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu', | |
in_norm: Literal['group_norm', 'layer_norm', 'instance_norm', 'none'] = 'layer_norm', | |
hidden_norm: Literal['group_norm', 'layer_norm', 'instance_norm'] = 'group_norm', | |
): | |
super(ResidualConvBlock, self).__init__() | |
if out_channels is None: | |
out_channels = in_channels | |
if hidden_channels is None: | |
hidden_channels = in_channels | |
if activation =='relu': | |
activation_cls = nn.ReLU | |
elif activation == 'leaky_relu': | |
activation_cls = functools.partial(nn.LeakyReLU, negative_slope=0.2) | |
elif activation =='silu': | |
activation_cls = nn.SiLU | |
elif activation == 'elu': | |
activation_cls = nn.ELU | |
else: | |
raise ValueError(f'Unsupported activation function: {activation}') | |
self.layers = nn.Sequential( | |
nn.GroupNorm(in_channels // 32, in_channels) if in_norm == 'group_norm' else \ | |
nn.GroupNorm(1, in_channels) if in_norm == 'layer_norm' else \ | |
nn.InstanceNorm2d(in_channels) if in_norm == 'instance_norm' else \ | |
nn.Identity(), | |
activation_cls(), | |
nn.Conv2d(in_channels, hidden_channels, kernel_size=kernel_size, padding=kernel_size // 2, padding_mode=padding_mode), | |
nn.GroupNorm(hidden_channels // 32, hidden_channels) if hidden_norm == 'group_norm' else \ | |
nn.GroupNorm(1, hidden_channels) if hidden_norm == 'layer_norm' else \ | |
nn.InstanceNorm2d(hidden_channels) if hidden_norm == 'instance_norm' else\ | |
nn.Identity(), | |
activation_cls(), | |
nn.Conv2d(hidden_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2, padding_mode=padding_mode) | |
) | |
self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if in_channels != out_channels else nn.Identity() | |
def forward(self, x): | |
skip = self.skip_connection(x) | |
x = self.layers(x) | |
x = x + skip | |
return x | |
class DINOv2Encoder(nn.Module): | |
"Wrapped DINOv2 encoder supporting gradient checkpointing. Input is RGB image in range [0, 1]." | |
backbone: DinoVisionTransformer | |
image_mean: torch.Tensor | |
image_std: torch.Tensor | |
dim_features: int | |
def __init__(self, backbone: str, intermediate_layers: Union[int, List[int]], dim_out: int, **deprecated_kwargs): | |
super(DINOv2Encoder, self).__init__() | |
self.intermediate_layers = intermediate_layers | |
# Load the backbone | |
self.hub_loader = getattr(importlib.import_module(".dinov2.hub.backbones", __package__), backbone) | |
self.backbone_name = backbone | |
self.backbone = self.hub_loader(pretrained=False) | |
self.dim_features = self.backbone.blocks[0].attn.qkv.in_features | |
self.num_features = intermediate_layers if isinstance(intermediate_layers, int) else len(intermediate_layers) | |
self.output_projections = nn.ModuleList([ | |
nn.Conv2d(in_channels=self.dim_features, out_channels=dim_out, kernel_size=1, stride=1, padding=0,) | |
for _ in range(self.num_features) | |
]) | |
self.register_buffer("image_mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer("image_std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
def init_weights(self): | |
pretrained_backbone_state_dict = self.hub_loader(pretrained=True).state_dict() | |
self.backbone.load_state_dict(pretrained_backbone_state_dict) | |
def enable_gradient_checkpointing(self): | |
for i in range(len(self.backbone.blocks)): | |
wrap_module_with_gradient_checkpointing(self.backbone.blocks[i]) | |
def enable_pytorch_native_sdpa(self): | |
for i in range(len(self.backbone.blocks)): | |
wrap_dinov2_attention_with_sdpa(self.backbone.blocks[i].attn) | |
def forward(self, image: torch.Tensor, token_rows: int, token_cols: int, return_class_token: bool = False) -> Tuple[torch.Tensor, torch.Tensor]: | |
image_14 = F.interpolate(image, (token_rows * 14, token_cols * 14), mode="bilinear", align_corners=False, antialias=True) | |
image_14 = (image_14 - self.image_mean) / self.image_std | |
# Get intermediate layers from the backbone | |
features = self.backbone.get_intermediate_layers(image_14, n=self.intermediate_layers, return_class_token=True) | |
# Project features to the desired dimensionality | |
x = torch.stack([ | |
proj(feat.permute(0, 2, 1).unflatten(2, (token_rows, token_cols)).contiguous()) | |
for proj, (feat, clstoken) in zip(self.output_projections, features) | |
], dim=1).sum(dim=1) | |
if return_class_token: | |
return x, features[-1][1] | |
else: | |
return x | |
class Resampler(nn.Sequential): | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
type_: Literal['pixel_shuffle', 'nearest', 'bilinear', 'conv_transpose', 'pixel_unshuffle', 'avg_pool', 'max_pool'], | |
scale_factor: int = 2, | |
): | |
if type_ == 'pixel_shuffle': | |
nn.Sequential.__init__(self, | |
nn.Conv2d(in_channels, out_channels * (scale_factor ** 2), kernel_size=3, stride=1, padding=1, padding_mode='replicate'), | |
nn.PixelShuffle(scale_factor), | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate') | |
) | |
for i in range(1, scale_factor ** 2): | |
self[0].weight.data[i::scale_factor ** 2] = self[0].weight.data[0::scale_factor ** 2] | |
self[0].bias.data[i::scale_factor ** 2] = self[0].bias.data[0::scale_factor ** 2] | |
elif type_ in ['nearest', 'bilinear']: | |
nn.Sequential.__init__(self, | |
nn.Upsample(scale_factor=scale_factor, mode=type_, align_corners=False if type_ == 'bilinear' else None), | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate') | |
) | |
elif type_ == 'conv_transpose': | |
nn.Sequential.__init__(self, | |
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=scale_factor, stride=scale_factor), | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate') | |
) | |
self[0].weight.data[:] = self[0].weight.data[:, :, :1, :1] | |
elif type_ == 'pixel_unshuffle': | |
nn.Sequential.__init__(self, | |
nn.PixelUnshuffle(scale_factor), | |
nn.Conv2d(in_channels * (scale_factor ** 2), out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate') | |
) | |
elif type_ == 'avg_pool': | |
nn.Sequential.__init__(self, | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'), | |
nn.AvgPool2d(kernel_size=scale_factor, stride=scale_factor), | |
) | |
elif type_ == 'max_pool': | |
nn.Sequential.__init__(self, | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'), | |
nn.MaxPool2d(kernel_size=scale_factor, stride=scale_factor), | |
) | |
else: | |
raise ValueError(f'Unsupported resampler type: {type_}') | |
class MLP(nn.Sequential): | |
def __init__(self, dims: Sequence[int]): | |
nn.Sequential.__init__(self, | |
*itertools.chain(*[ | |
(nn.Linear(dim_in, dim_out), nn.ReLU(inplace=True)) | |
for dim_in, dim_out in zip(dims[:-2], dims[1:-1]) | |
]), | |
nn.Linear(dims[-2], dims[-1]), | |
) | |
class ConvStack(nn.Module): | |
def __init__(self, | |
dim_in: List[Optional[int]], | |
dim_res_blocks: List[int], | |
dim_out: List[Optional[int]], | |
resamplers: Union[Literal['pixel_shuffle', 'nearest', 'bilinear', 'conv_transpose', 'pixel_unshuffle', 'avg_pool', 'max_pool'], List], | |
dim_times_res_block_hidden: int = 1, | |
num_res_blocks: int = 1, | |
res_block_in_norm: Literal['layer_norm', 'group_norm' , 'instance_norm', 'none'] = 'layer_norm', | |
res_block_hidden_norm: Literal['layer_norm', 'group_norm' , 'instance_norm', 'none'] = 'group_norm', | |
activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu', | |
): | |
super().__init__() | |
self.input_blocks = nn.ModuleList([ | |
nn.Conv2d(dim_in_, dim_res_block_, kernel_size=1, stride=1, padding=0) if dim_in_ is not None else nn.Identity() | |
for dim_in_, dim_res_block_ in zip(dim_in if isinstance(dim_in, Sequence) else itertools.repeat(dim_in), dim_res_blocks) | |
]) | |
self.resamplers = nn.ModuleList([ | |
Resampler(dim_prev, dim_succ, scale_factor=2, type_=resampler) | |
for i, (dim_prev, dim_succ, resampler) in enumerate(zip( | |
dim_res_blocks[:-1], | |
dim_res_blocks[1:], | |
resamplers if isinstance(resamplers, Sequence) else itertools.repeat(resamplers) | |
)) | |
]) | |
self.res_blocks = nn.ModuleList([ | |
nn.Sequential( | |
*( | |
ResidualConvBlock( | |
dim_res_block_, dim_res_block_, dim_times_res_block_hidden * dim_res_block_, | |
activation=activation, in_norm=res_block_in_norm, hidden_norm=res_block_hidden_norm | |
) for _ in range(num_res_blocks[i] if isinstance(num_res_blocks, list) else num_res_blocks) | |
) | |
) for i, dim_res_block_ in enumerate(dim_res_blocks) | |
]) | |
self.output_blocks = nn.ModuleList([ | |
nn.Conv2d(dim_res_block_, dim_out_, kernel_size=1, stride=1, padding=0) if dim_out_ is not None else nn.Identity() | |
for dim_out_, dim_res_block_ in zip(dim_out if isinstance(dim_out, Sequence) else itertools.repeat(dim_out), dim_res_blocks) | |
]) | |
def enable_gradient_checkpointing(self): | |
for i in range(len(self.resamplers)): | |
self.resamplers[i] = wrap_module_with_gradient_checkpointing(self.resamplers[i]) | |
for i in range(len(self.res_blocks)): | |
for j in range(len(self.res_blocks[i])): | |
self.res_blocks[i][j] = wrap_module_with_gradient_checkpointing(self.res_blocks[i][j]) | |
def forward(self, in_features: List[torch.Tensor]): | |
batch_shape = in_features[0].shape[:-3] | |
in_features = [x.reshape(-1, *x.shape[-3:]) for x in in_features] | |
out_features = [] | |
for i in range(len(self.res_blocks)): | |
feature = self.input_blocks[i](in_features[i]) | |
if i == 0: | |
x = feature | |
elif feature is not None: | |
x = x + feature | |
x = self.res_blocks[i](x) | |
out_features.append(self.output_blocks[i](x)) | |
if i < len(self.res_blocks) - 1: | |
x = self.resamplers[i](x) | |
out_features = [x.unflatten(0, batch_shape) for x in out_features] | |
return out_features | |