File size: 12,001 Bytes
a51c6d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from typing import *
from numbers import Number
import importlib
import itertools
import functools
import sys

import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F

from .dinov2.models.vision_transformer import DinoVisionTransformer
from .utils import wrap_dinov2_attention_with_sdpa, wrap_module_with_gradient_checkpointing, unwrap_module_with_gradient_checkpointing
from ..utils.geometry_torch import normalized_view_plane_uv


class ResidualConvBlock(nn.Module):  
    def __init__(
        self, 
        in_channels: int, 
        out_channels: int = None, 
        hidden_channels: int = None, 
        kernel_size: int = 3, 
        padding_mode: str = 'replicate', 
        activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu', 
        in_norm: Literal['group_norm', 'layer_norm', 'instance_norm', 'none'] = 'layer_norm',
        hidden_norm: Literal['group_norm', 'layer_norm', 'instance_norm'] = 'group_norm',
    ):  
        super(ResidualConvBlock, self).__init__()  
        if out_channels is None:  
            out_channels = in_channels
        if hidden_channels is None:
            hidden_channels = in_channels

        if activation =='relu':
            activation_cls = nn.ReLU
        elif activation == 'leaky_relu':
            activation_cls = functools.partial(nn.LeakyReLU, negative_slope=0.2)
        elif activation =='silu':
            activation_cls = nn.SiLU
        elif activation == 'elu':
            activation_cls = nn.ELU
        else:
            raise ValueError(f'Unsupported activation function: {activation}')

        self.layers = nn.Sequential(
            nn.GroupNorm(in_channels // 32, in_channels) if in_norm == 'group_norm' else \
                nn.GroupNorm(1, in_channels) if in_norm == 'layer_norm' else \
                nn.InstanceNorm2d(in_channels) if in_norm == 'instance_norm' else \
                nn.Identity(),
            activation_cls(),
            nn.Conv2d(in_channels, hidden_channels, kernel_size=kernel_size, padding=kernel_size // 2, padding_mode=padding_mode),
            nn.GroupNorm(hidden_channels // 32, hidden_channels) if hidden_norm == 'group_norm' else \
                nn.GroupNorm(1, hidden_channels) if hidden_norm == 'layer_norm' else \
                nn.InstanceNorm2d(hidden_channels) if hidden_norm == 'instance_norm' else\
                nn.Identity(),
            activation_cls(),
            nn.Conv2d(hidden_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2, padding_mode=padding_mode)
        )
        
        self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) if in_channels != out_channels else nn.Identity()  
  
    def forward(self, x):  
        skip = self.skip_connection(x)  
        x = self.layers(x)
        x = x + skip
        return x  


class DINOv2Encoder(nn.Module):
    "Wrapped DINOv2 encoder supporting gradient checkpointing. Input is RGB image in range [0, 1]."
    backbone: DinoVisionTransformer
    image_mean: torch.Tensor
    image_std: torch.Tensor
    dim_features: int

    def __init__(self, backbone: str, intermediate_layers: Union[int, List[int]], dim_out: int, **deprecated_kwargs):
        super(DINOv2Encoder, self).__init__()

        self.intermediate_layers = intermediate_layers

        # Load the backbone
        self.hub_loader = getattr(importlib.import_module(".dinov2.hub.backbones", __package__), backbone)
        self.backbone_name = backbone
        self.backbone = self.hub_loader(pretrained=False)

        self.dim_features = self.backbone.blocks[0].attn.qkv.in_features
        self.num_features = intermediate_layers if isinstance(intermediate_layers, int) else len(intermediate_layers)

        self.output_projections = nn.ModuleList([
            nn.Conv2d(in_channels=self.dim_features, out_channels=dim_out, kernel_size=1, stride=1, padding=0,) 
                for _ in range(self.num_features)
        ])

        self.register_buffer("image_mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        self.register_buffer("image_std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
        
    def init_weights(self):
        pretrained_backbone_state_dict = self.hub_loader(pretrained=True).state_dict()
        self.backbone.load_state_dict(pretrained_backbone_state_dict)

    def enable_gradient_checkpointing(self):
        for i in range(len(self.backbone.blocks)):
            wrap_module_with_gradient_checkpointing(self.backbone.blocks[i])

    def enable_pytorch_native_sdpa(self):
        for i in range(len(self.backbone.blocks)):
            wrap_dinov2_attention_with_sdpa(self.backbone.blocks[i].attn)

    def forward(self, image: torch.Tensor, token_rows: int, token_cols: int, return_class_token: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
        image_14 = F.interpolate(image, (token_rows * 14, token_cols * 14), mode="bilinear", align_corners=False, antialias=True)
        image_14 = (image_14 - self.image_mean) / self.image_std

        # Get intermediate layers from the backbone
        features = self.backbone.get_intermediate_layers(image_14, n=self.intermediate_layers, return_class_token=True)
    
        # Project features to the desired dimensionality
        x = torch.stack([
            proj(feat.permute(0, 2, 1).unflatten(2, (token_rows, token_cols)).contiguous())
                for proj, (feat, clstoken) in zip(self.output_projections, features)
        ], dim=1).sum(dim=1)                    

        if return_class_token:
            return x, features[-1][1]
        else:
            return x


class Resampler(nn.Sequential):
    def __init__(self, 
        in_channels: int, 
        out_channels: int, 
        type_: Literal['pixel_shuffle', 'nearest', 'bilinear', 'conv_transpose', 'pixel_unshuffle', 'avg_pool', 'max_pool'],
        scale_factor: int = 2, 
    ):
        if type_ == 'pixel_shuffle':
            nn.Sequential.__init__(self,
                nn.Conv2d(in_channels, out_channels * (scale_factor ** 2), kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
                nn.PixelShuffle(scale_factor),
                nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
            )
            for i in range(1, scale_factor ** 2):
                self[0].weight.data[i::scale_factor ** 2] = self[0].weight.data[0::scale_factor ** 2]
                self[0].bias.data[i::scale_factor ** 2] = self[0].bias.data[0::scale_factor ** 2]
        elif type_ in ['nearest', 'bilinear']:
            nn.Sequential.__init__(self,
                nn.Upsample(scale_factor=scale_factor, mode=type_, align_corners=False if type_ == 'bilinear' else None),
                nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
            )
        elif type_ == 'conv_transpose':
            nn.Sequential.__init__(self,
                nn.ConvTranspose2d(in_channels, out_channels, kernel_size=scale_factor, stride=scale_factor),
                nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
            )
            self[0].weight.data[:] = self[0].weight.data[:, :, :1, :1]
        elif type_ == 'pixel_unshuffle':
            nn.Sequential.__init__(self,
                nn.PixelUnshuffle(scale_factor),
                nn.Conv2d(in_channels * (scale_factor ** 2), out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate')
            )
        elif type_ == 'avg_pool': 
            nn.Sequential.__init__(self,
                nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
                nn.AvgPool2d(kernel_size=scale_factor, stride=scale_factor),
            )
        elif type_ == 'max_pool':
            nn.Sequential.__init__(self,
                nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, padding_mode='replicate'),
                nn.MaxPool2d(kernel_size=scale_factor, stride=scale_factor),
            )
        else:
            raise ValueError(f'Unsupported resampler type: {type_}')

class MLP(nn.Sequential):
    def __init__(self, dims: Sequence[int]):
        nn.Sequential.__init__(self,
            *itertools.chain(*[
                (nn.Linear(dim_in, dim_out), nn.ReLU(inplace=True))
                    for dim_in, dim_out in zip(dims[:-2], dims[1:-1])
            ]),
            nn.Linear(dims[-2], dims[-1]),
        )


class ConvStack(nn.Module):
    def __init__(self, 
        dim_in: List[Optional[int]],
        dim_res_blocks: List[int],
        dim_out: List[Optional[int]],
        resamplers: Union[Literal['pixel_shuffle', 'nearest', 'bilinear', 'conv_transpose', 'pixel_unshuffle', 'avg_pool', 'max_pool'], List],
        dim_times_res_block_hidden: int = 1,
        num_res_blocks: int = 1,
        res_block_in_norm: Literal['layer_norm', 'group_norm' , 'instance_norm', 'none'] = 'layer_norm',
        res_block_hidden_norm: Literal['layer_norm', 'group_norm' , 'instance_norm', 'none'] = 'group_norm',
        activation: Literal['relu', 'leaky_relu', 'silu', 'elu'] = 'relu',
    ):
        super().__init__()
        self.input_blocks = nn.ModuleList([
            nn.Conv2d(dim_in_, dim_res_block_, kernel_size=1, stride=1, padding=0) if dim_in_ is not None else nn.Identity() 
                for dim_in_, dim_res_block_ in zip(dim_in if isinstance(dim_in, Sequence) else itertools.repeat(dim_in), dim_res_blocks)
        ])
        self.resamplers = nn.ModuleList([
            Resampler(dim_prev, dim_succ, scale_factor=2, type_=resampler) 
                for i, (dim_prev, dim_succ, resampler) in enumerate(zip(
                    dim_res_blocks[:-1], 
                    dim_res_blocks[1:], 
                    resamplers if isinstance(resamplers, Sequence) else itertools.repeat(resamplers)
                ))
        ])
        self.res_blocks = nn.ModuleList([
            nn.Sequential(
                *(
                    ResidualConvBlock(
                        dim_res_block_, dim_res_block_, dim_times_res_block_hidden * dim_res_block_, 
                        activation=activation, in_norm=res_block_in_norm, hidden_norm=res_block_hidden_norm
                    ) for _ in range(num_res_blocks[i] if isinstance(num_res_blocks, list) else num_res_blocks)
                )
            ) for i, dim_res_block_ in enumerate(dim_res_blocks)
        ])
        self.output_blocks = nn.ModuleList([
            nn.Conv2d(dim_res_block_, dim_out_, kernel_size=1, stride=1, padding=0) if dim_out_ is not None else nn.Identity() 
                for dim_out_, dim_res_block_ in zip(dim_out if isinstance(dim_out, Sequence) else itertools.repeat(dim_out), dim_res_blocks)
        ])

    def enable_gradient_checkpointing(self):
        for i in range(len(self.resamplers)):
            self.resamplers[i] = wrap_module_with_gradient_checkpointing(self.resamplers[i])
        for i in range(len(self.res_blocks)):
            for j in range(len(self.res_blocks[i])):
                self.res_blocks[i][j] = wrap_module_with_gradient_checkpointing(self.res_blocks[i][j])

    def forward(self, in_features: List[torch.Tensor]):
        batch_shape = in_features[0].shape[:-3]
        in_features = [x.reshape(-1, *x.shape[-3:]) for x in in_features]

        out_features = []
        for i in range(len(self.res_blocks)):
            feature = self.input_blocks[i](in_features[i])
            if i == 0:
                x = feature
            elif feature is not None:
                x = x + feature
            x = self.res_blocks[i](x)
            out_features.append(self.output_blocks[i](x))
            if i < len(self.res_blocks) - 1:
                x = self.resamplers[i](x)
        
        out_features = [x.unflatten(0, batch_shape) for x in out_features]
        return out_features