File size: 14,599 Bytes
d9c23d1
 
b5faafa
fc07371
d9c23d1
 
fc07371
d9c23d1
fc07371
b5faafa
d9c23d1
664b67c
b5faafa
 
 
 
 
 
bfdb8e9
 
 
 
 
 
 
 
 
 
 
 
 
d9c23d1
 
 
fc07371
d9c23d1
 
fc07371
d9c23d1
 
 
 
fc07371
d9c23d1
 
 
 
b5faafa
d9c23d1
 
 
fc07371
b5faafa
d9c23d1
 
 
 
 
 
b5faafa
d9c23d1
 
bfdb8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c23d1
 
fc07371
 
 
d9c23d1
 
 
fc07371
b7d2d3d
b5faafa
b7d2d3d
 
d9c23d1
 
b5faafa
fc07371
 
 
dfe572b
 
 
 
 
 
 
 
 
 
 
 
 
 
bfdb8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe572b
bfdb8e9
 
 
 
 
 
 
dfe572b
bfdb8e9
 
 
 
b5faafa
bfdb8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc07371
 
 
 
 
 
 
 
 
 
 
d9c23d1
 
fc07371
d9c23d1
 
 
 
664b67c
 
 
 
d9c23d1
 
 
 
fc07371
 
d9c23d1
3681af9
 
 
 
3fba19d
d9c23d1
fc07371
 
d9c23d1
 
 
fc07371
d9c23d1
3fba19d
 
 
 
 
 
 
 
 
 
 
 
b5faafa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fba19d
 
 
 
 
 
 
 
b5faafa
3fba19d
d9c23d1
3fba19d
d9c23d1
 
fc07371
3fba19d
 
b5faafa
 
3fba19d
fc07371
d9c23d1
 
 
 
fc07371
d9c23d1
b7d2d3d
 
fc07371
 
d9c23d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState, END
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain_groq import ChatGroq
from supabase import create_client
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_openai import ChatOpenAI
from langchain_core.documents import Document
import json
import pdfplumber
import pandas as pd
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
import cmath
from code_interpreter import CodeInterpreter
import uuid
import tempfile
import requests
from urllib.parse import urlparse
from typing import Optional


load_dotenv()

# ------------------- TOOL DEFINITIONS -------------------
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract b from a."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide a by b. Raise error if b is zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get remainder of a divided by b."""
    return a % b

@tool
def square_root(a: float) -> float | complex:
    """
    Get the square root of a number.
    Args:
        a (float): the number to get the square root of
    """
    if a >= 0:
        return a**0.5
    return cmath.sqrt(a)

@tool
def power(a: float, b: float) -> float:
    """
    Get the power of two numbers.
    Args:
        a (float): the first number
        b (float): the second number
    """
    return a**b


@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query (max 2 results)."""
    docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n".join([doc.page_content for doc in docs])

@tool
def web_search(query: str) -> str:
    """Search the web using Tavily (max 3 results)."""
    results = TavilySearchResults(max_results=3).invoke(query)
    texts = [doc.get("content", "") or doc.get("text", "") for doc in results if isinstance(doc, dict)]
    return "\n\n".join(texts)

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for academic papers (max 3 results, truncated to 1000 characters each)."""
    docs = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n".join([doc.page_content[:1000] for doc in docs])

@tool
def read_excel_file(path: str) -> str:
    """Read an Excel file and return the first few rows of each sheet as text."""
    import pandas as pd
    try:
        xls = pd.ExcelFile(path)
        content = ""
        for sheet in xls.sheet_names:
            df = xls.parse(sheet)
            content += f"Sheet: {sheet}\n"
            content += df.head(5).to_string(index=False) + "\n\n"
        return content.strip()
    except Exception as e:
        return f"Error reading Excel file: {str(e)}"
    
@tool
def extract_text_from_pdf(path: str) -> str:
    """Extract text from a PDF file given its local path."""
    try:
        text = ""
        with pdfplumber.open(path) as pdf:
            for page in pdf.pages[:5]:  # 限前5页,避免过大
                page_text = page.extract_text()
                if page_text:
                    text += page_text + "\n\n"
        return text.strip() if text else "No text extracted from PDF."
    except Exception as e:
        return f"Error reading PDF: {str(e)}"

# 初始化模型(首次加载可能稍慢)
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

@tool
def blip_image_caption(image_path: str) -> str:
    """Generate a description for an image using BLIP."""
    try:
        image = Image.open(image_path).convert("RGB")
        inputs = processor(image, return_tensors="pt")
        with torch.no_grad():
            out = model.generate(**inputs)
        caption = processor.decode(out[0], skip_special_tokens=True)
        return caption
    except Exception as e:
        return f"Failed to process image with BLIP: {str(e)}"
    
@tool
def execute_code_multilang(code: str, language: str = "python") -> str:
    """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
    Args:
        code (str): The source code to execute.
        language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
    Returns:
        A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
    """
    supported_languages = ["python", "bash", "sql", "c", "java"]
    language = language.lower()
    interpreter_instance = CodeInterpreter()

    if language not in supported_languages:
        return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"

    result = interpreter_instance.execute_code(code, language=language)

    response = []

    if result["status"] == "success":
        response.append(f"✅ Code executed successfully in **{language.upper()}**")

        if result.get("stdout"):
            response.append(
                "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
            )

        if result.get("stderr"):
            response.append(
                "\n**Standard Error (if any):**\n```\n"
                + result["stderr"].strip()
                + "\n```"
            )

        if result.get("result") is not None:
            response.append(
                "\n**Execution Result:**\n```\n"
                + str(result["result"]).strip()
                + "\n```"
            )

        if result.get("dataframes"):
            for df_info in result["dataframes"]:
                response.append(
                    f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
                )
                df_preview = pd.DataFrame(df_info["head"])
                response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")

        if result.get("plots"):
            response.append(
                f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
            )

    else:
        response.append(f"❌ Code execution failed in **{language.upper()}**")
        if result.get("stderr"):
            response.append(
                "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
            )

    return "\n".join(response)

@tool
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """
    Save content to a file and return the path.
    Args:
        content (str): the content to save to the file
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)

    with open(filepath, "w") as f:
        f.write(content)

    return f"File saved to {filepath}. You can read this file to process its contents."


@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and save it to a temporary location.
    Args:
        url (str): the URL of the file to download.
        filename (str, optional): the name of the file. If not provided, a random name file will be created.
    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"

        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)

        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()

        # Save the file
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)

        return f"File downloaded to {filepath}. You can read this file to process its contents."
    except Exception as e:
        return f"Error downloading file: {str(e)}"
    
@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """
    Analyze a CSV file using pandas and answer a question about it.
    Args:
        file_path (str): the path to the CSV file.
        query (str): Question about the data
    """
    try:
        # Read the CSV file
        df = pd.read_csv(file_path)

        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"

        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())

        return result

    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"
tools = [multiply, add, subtract, divide, modulus, 
         wiki_search, web_search, arvix_search, read_excel_file, extract_text_from_pdf,
         blip_image_caption, execute_code_multilang, save_and_read_file, download_file_from_url, analyze_csv_file]

# ------------------- SYSTEM PROMPT -------------------
system_prompt_path = "system_prompt.txt"
if os.path.exists(system_prompt_path):
    with open(system_prompt_path, "r", encoding="utf-8") as f:
        system_prompt = f.read()
else:
    system_prompt = (
        "You are an intelligent AI agent who can solve math, science, factual, and research-based problems. "
        "You can use tools like Wikipedia, Web search, or Arxiv when needed. Always give precise and helpful answers."
    )
sys_msg = SystemMessage(content=system_prompt)

# ------------------- GRAPH CONSTRUCTION -------------------
def build_graph(provider: str = "groq"):
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        groq_key = os.getenv("GROQ_API_KEY")
        if not groq_key:
            raise ValueError("GROQ_API_KEY is not set.")
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0, api_key=groq_key)
    elif provider == "huggingface":
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0
            )
        )
    elif provider == "openai":
        openai_key = os.getenv("OPENAI_API_KEY")
        if not openai_key:
            raise ValueError("OPENAI_API_KEY is not set.")
        llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=openai_key)
    else:
        raise ValueError("Invalid provider")

    llm_with_tools = llm.bind_tools(tools)

    def assistant(state: MessagesState):
        return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]}

    SUPABASE_URL = os.getenv("SUPABASE_URL")
    SUPABASE_KEY = os.getenv("SUPABASE_SERVICE_KEY")
    supabase = create_client(SUPABASE_URL, SUPABASE_KEY)

    embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
    vectorstore = SupabaseVectorStore(
        client=supabase,
        embedding=embedding_model,
        table_name="QA_db"
    )
    retriever = vectorstore.as_retriever(search_kwargs={"k": 1})


    # ✅ 替换 similarity_search_by_vector_with_relevance_scores 方法,直接调用 supabase.rpc
    original_fn = vectorstore.similarity_search_by_vector_with_relevance_scores

    # ✅ 覆盖 vectorstore 的方法
    def patched_fn(embedding, k=4, filter=None, **kwargs):
        response = supabase.rpc(
            "match_documents",
            {
                "query_embedding": embedding,
                "match_count": k
            }
        ).execute()

        documents = []
        for r in response.data:
            metadata = r["metadata"]
            if isinstance(metadata, str):
                try:
                    metadata = json.loads(metadata)
                except Exception:
                    metadata = {}
            doc = Document(
                page_content=r["content"],
                metadata=metadata
            )
            documents.append((doc, r["similarity"]))
        return documents

    # ✅ 覆盖 vectorstore 的方法
    vectorstore.similarity_search_by_vector_with_relevance_scores = patched_fn

    def qa_retriever_node(state: MessagesState):
        user_question = state["messages"][-1].content
        docs = retriever.invoke(user_question)
        if docs:
            return {
                "messages": state["messages"] + [AIMessage(content=docs[0].page_content)],
                "__condition__": "complete"
            }
        return {"messages": state["messages"], "__condition__": "default"}

    builder = StateGraph(MessagesState)
    builder.add_node("retriever", qa_retriever_node)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))

    builder.add_edge(START, "retriever")
    builder.add_conditional_edges("retriever", {
        "default": lambda x: "assistant",
        "complete": lambda x: END,
    })
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

# ------------------- LOCAL TEST -------------------
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    graph = build_graph(provider="openai")
    messages = graph.invoke({"messages": [HumanMessage(content=question)]})
    print("=== AI Agent Response ===")
    for m in messages["messages"]:
        m.pretty_print()