Yongkang ZOU
commited on
Commit
·
fc07371
1
Parent(s):
7cbe9e1
update agent
Browse files
agent.py
CHANGED
@@ -1,213 +1,120 @@
|
|
1 |
-
"""LangGraph Agent"""
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
4 |
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
-
from langgraph.prebuilt import tools_condition
|
6 |
-
from langgraph.prebuilt import ToolNode
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain_groq import ChatGroq
|
9 |
-
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
-
from langchain_community.document_loaders import WikipediaLoader
|
12 |
-
from langchain_community.document_loaders import ArxivLoader
|
13 |
-
from langchain_community.vectorstores import SupabaseVectorStore
|
14 |
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
from langchain_core.tools import tool
|
16 |
-
from langchain.tools.retriever import create_retriever_tool
|
17 |
-
# from supabase.client import Client, create_client
|
18 |
|
19 |
load_dotenv()
|
20 |
|
|
|
|
|
21 |
@tool
|
22 |
def multiply(a: int, b: int) -> int:
|
23 |
-
"""Multiply two numbers.
|
24 |
-
Args:
|
25 |
-
a: first int
|
26 |
-
b: second int
|
27 |
-
"""
|
28 |
return a * b
|
29 |
|
30 |
@tool
|
31 |
def add(a: int, b: int) -> int:
|
32 |
-
"""Add two numbers.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
a: first int
|
36 |
-
b: second int
|
37 |
-
"""
|
38 |
return a + b
|
39 |
|
40 |
@tool
|
41 |
def subtract(a: int, b: int) -> int:
|
42 |
-
"""Subtract two numbers.
|
43 |
-
|
44 |
-
Args:
|
45 |
-
a: first int
|
46 |
-
b: second int
|
47 |
-
"""
|
48 |
return a - b
|
49 |
|
50 |
@tool
|
51 |
-
def divide(a: int, b: int) ->
|
52 |
-
"""Divide two numbers.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
a: first int
|
56 |
-
b: second int
|
57 |
-
"""
|
58 |
if b == 0:
|
59 |
raise ValueError("Cannot divide by zero.")
|
60 |
return a / b
|
61 |
|
62 |
@tool
|
63 |
def modulus(a: int, b: int) -> int:
|
64 |
-
"""Get the modulus of two numbers.
|
65 |
-
|
66 |
-
Args:
|
67 |
-
a: first int
|
68 |
-
b: second int
|
69 |
-
"""
|
70 |
return a % b
|
71 |
|
72 |
@tool
|
73 |
def wiki_search(query: str) -> str:
|
74 |
-
"""Search Wikipedia for a query
|
75 |
-
|
76 |
-
|
77 |
-
query: The search query."""
|
78 |
-
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
79 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
80 |
-
[
|
81 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
82 |
-
for doc in search_docs
|
83 |
-
])
|
84 |
-
return {"wiki_results": formatted_search_docs}
|
85 |
|
86 |
@tool
|
87 |
def web_search(query: str) -> str:
|
88 |
-
"""Search
|
89 |
-
|
90 |
-
|
91 |
-
query: The search query."""
|
92 |
-
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
93 |
-
formatted_search_docs = "\n\n---\n\n".join(
|
94 |
-
[
|
95 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
96 |
-
for doc in search_docs
|
97 |
-
])
|
98 |
-
return {"web_results": formatted_search_docs}
|
99 |
|
100 |
@tool
|
101 |
def arvix_search(query: str) -> str:
|
102 |
-
"""Search Arxiv for
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
# System message
|
121 |
sys_msg = SystemMessage(content=system_prompt)
|
122 |
|
123 |
-
#
|
124 |
-
|
125 |
-
# supabase: Client = create_client(
|
126 |
-
# os.environ.get("SUPABASE_URL"),
|
127 |
-
# os.environ.get("SUPABASE_SERVICE_KEY"))
|
128 |
-
# vector_store = SupabaseVectorStore(
|
129 |
-
# client=supabase,
|
130 |
-
# embedding= embeddings,
|
131 |
-
# table_name="documents",
|
132 |
-
# query_name="match_documents_langchain",
|
133 |
-
# )
|
134 |
-
# create_retriever_tool = create_retriever_tool(
|
135 |
-
# retriever=vector_store.as_retriever(),
|
136 |
-
# name="Question Search",
|
137 |
-
# description="A tool to retrieve similar questions from a vector store.",
|
138 |
-
# )
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
tools = [
|
143 |
-
multiply,
|
144 |
-
add,
|
145 |
-
subtract,
|
146 |
-
divide,
|
147 |
-
modulus,
|
148 |
-
wiki_search,
|
149 |
-
web_search,
|
150 |
-
arvix_search,
|
151 |
-
]
|
152 |
-
|
153 |
-
# Build graph function
|
154 |
def build_graph(provider: str = "groq"):
|
155 |
-
"""Build the
|
156 |
-
#
|
157 |
if provider == "google":
|
158 |
-
# Google Gemini
|
159 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
160 |
elif provider == "groq":
|
161 |
-
|
162 |
-
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
163 |
elif provider == "huggingface":
|
164 |
-
# TODO: Add huggingface endpoint
|
165 |
llm = ChatHuggingFace(
|
166 |
llm=HuggingFaceEndpoint(
|
167 |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
168 |
-
temperature=0
|
169 |
-
)
|
170 |
)
|
171 |
else:
|
172 |
-
raise ValueError("Invalid provider
|
173 |
-
|
174 |
llm_with_tools = llm.bind_tools(tools)
|
175 |
|
176 |
-
# Node
|
177 |
def assistant(state: MessagesState):
|
178 |
-
""
|
179 |
-
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
180 |
-
|
181 |
-
# def retriever(state: MessagesState):
|
182 |
-
# """Retriever node"""
|
183 |
-
# similar_question = vector_store.similarity_search(state["messages"][0].content)
|
184 |
-
# example_msg = HumanMessage(
|
185 |
-
# content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
186 |
-
# )
|
187 |
-
# return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
188 |
|
|
|
189 |
builder = StateGraph(MessagesState)
|
190 |
-
# builder.add_node("retriever", retriever)
|
191 |
builder.add_node("assistant", assistant)
|
192 |
builder.add_node("tools", ToolNode(tools))
|
193 |
-
|
194 |
-
builder.add_edge(
|
195 |
-
builder.add_conditional_edges(
|
196 |
-
"assistant",
|
197 |
-
tools_condition,
|
198 |
-
)
|
199 |
builder.add_edge("tools", "assistant")
|
200 |
|
201 |
-
# Compile graph
|
202 |
return builder.compile()
|
203 |
|
204 |
-
#
|
|
|
205 |
if __name__ == "__main__":
|
206 |
-
question = "
|
207 |
-
# Build the graph
|
208 |
graph = build_graph(provider="groq")
|
209 |
-
|
210 |
-
|
211 |
-
messages = graph.invoke({"messages": messages})
|
212 |
for m in messages["messages"]:
|
213 |
m.pretty_print()
|
|
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
from langgraph.graph import START, StateGraph, MessagesState
|
4 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
|
|
5 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
6 |
from langchain_groq import ChatGroq
|
7 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
|
|
|
|
10 |
from langchain_core.messages import SystemMessage, HumanMessage
|
11 |
from langchain_core.tools import tool
|
|
|
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
15 |
+
# ------------------- TOOL DEFINITIONS -------------------
|
16 |
+
|
17 |
@tool
|
18 |
def multiply(a: int, b: int) -> int:
|
19 |
+
"""Multiply two numbers."""
|
|
|
|
|
|
|
|
|
20 |
return a * b
|
21 |
|
22 |
@tool
|
23 |
def add(a: int, b: int) -> int:
|
24 |
+
"""Add two numbers."""
|
|
|
|
|
|
|
|
|
|
|
25 |
return a + b
|
26 |
|
27 |
@tool
|
28 |
def subtract(a: int, b: int) -> int:
|
29 |
+
"""Subtract two numbers."""
|
|
|
|
|
|
|
|
|
|
|
30 |
return a - b
|
31 |
|
32 |
@tool
|
33 |
+
def divide(a: int, b: int) -> float:
|
34 |
+
"""Divide two numbers."""
|
|
|
|
|
|
|
|
|
|
|
35 |
if b == 0:
|
36 |
raise ValueError("Cannot divide by zero.")
|
37 |
return a / b
|
38 |
|
39 |
@tool
|
40 |
def modulus(a: int, b: int) -> int:
|
41 |
+
"""Get the modulus of two numbers."""
|
|
|
|
|
|
|
|
|
|
|
42 |
return a % b
|
43 |
|
44 |
@tool
|
45 |
def wiki_search(query: str) -> str:
|
46 |
+
"""Search Wikipedia for a query (max 2 results)."""
|
47 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
48 |
+
return "\n\n".join([doc.page_content for doc in docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
@tool
|
51 |
def web_search(query: str) -> str:
|
52 |
+
"""Search the web using Tavily (max 3 results)."""
|
53 |
+
docs = TavilySearchResults(max_results=3).invoke(query)
|
54 |
+
return "\n\n".join([doc.page_content for doc in docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
@tool
|
57 |
def arvix_search(query: str) -> str:
|
58 |
+
"""Search Arxiv for academic papers (max 3)."""
|
59 |
+
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
60 |
+
return "\n\n".join([doc.page_content[:1000] for doc in docs])
|
61 |
+
|
62 |
+
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
63 |
+
|
64 |
+
# ------------------- SYSTEM PROMPT -------------------
|
65 |
+
|
66 |
+
system_prompt_path = "system_prompt.txt"
|
67 |
+
if os.path.exists(system_prompt_path):
|
68 |
+
with open(system_prompt_path, "r", encoding="utf-8") as f:
|
69 |
+
system_prompt = f.read()
|
70 |
+
else:
|
71 |
+
system_prompt = (
|
72 |
+
"You are an intelligent AI agent who can solve math, science, factual, and research-based problems. "
|
73 |
+
"You can use tools like Wikipedia, Web search, or Arxiv when needed. Always give precise and helpful answers."
|
74 |
+
)
|
|
|
|
|
75 |
sys_msg = SystemMessage(content=system_prompt)
|
76 |
|
77 |
+
# ------------------- GRAPH CONSTRUCTION -------------------
|
78 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def build_graph(provider: str = "groq"):
|
80 |
+
"""Build the LangGraph with tool-use."""
|
81 |
+
# Select LLM provider
|
82 |
if provider == "google":
|
|
|
83 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
84 |
elif provider == "groq":
|
85 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
|
|
86 |
elif provider == "huggingface":
|
|
|
87 |
llm = ChatHuggingFace(
|
88 |
llm=HuggingFaceEndpoint(
|
89 |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
90 |
+
temperature=0
|
91 |
+
)
|
92 |
)
|
93 |
else:
|
94 |
+
raise ValueError("Invalid provider")
|
95 |
+
|
96 |
llm_with_tools = llm.bind_tools(tools)
|
97 |
|
|
|
98 |
def assistant(state: MessagesState):
|
99 |
+
return {"messages": [sys_msg] + [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Build the graph with assistant and tools
|
102 |
builder = StateGraph(MessagesState)
|
|
|
103 |
builder.add_node("assistant", assistant)
|
104 |
builder.add_node("tools", ToolNode(tools))
|
105 |
+
|
106 |
+
builder.add_edge(START, "assistant")
|
107 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
|
|
|
|
|
|
108 |
builder.add_edge("tools", "assistant")
|
109 |
|
|
|
110 |
return builder.compile()
|
111 |
|
112 |
+
# ------------------- LOCAL TEST -------------------
|
113 |
+
|
114 |
if __name__ == "__main__":
|
115 |
+
question = "What is 17 * 23?"
|
|
|
116 |
graph = build_graph(provider="groq")
|
117 |
+
messages = graph.invoke({"messages": [HumanMessage(content=question)]})
|
118 |
+
print("=== AI Agent Response ===")
|
|
|
119 |
for m in messages["messages"]:
|
120 |
m.pretty_print()
|