File size: 7,903 Bytes
77129be
 
 
 
5cd2aa6
77129be
5cd2aa6
77129be
 
 
ef8a823
77129be
bc12570
77129be
 
bc12570
77129be
 
b3a18de
bc12570
 
 
77129be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc12570
 
77129be
bc12570
77129be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc12570
77129be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc12570
77129be
5cd2aa6
77129be
 
 
 
 
 
 
bc12570
77129be
b31b98c
77129be
 
b31b98c
77129be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e99358f
77129be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b31b98c
77129be
b0dd995
 
77129be
 
515ea2f
77129be
 
 
 
 
 
 
 
b9a25dd
77129be
 
 
 
 
 
 
 
b0dd995
77129be
b0dd995
77129be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc12570
77129be
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
import os
import json
import uuid
from datasets import Dataset
from huggingface_hub import HfApi, login
import time

# Install required packages if not present
from gradio_modal import Modal
import huggingface_hub
import datasets

# Model setup
checkpoint = "WillHeld/soft-raccoon"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

# Constants for dataset
DATASET_REPO = "WillHeld/model-feedback"  # Replace with your username
DATASET_PATH = "./feedback_data"  # Local path to store feedback
DATASET_FILENAME = "feedback.jsonl"  # Filename for feedback data

# Ensure feedback directory exists
os.makedirs(DATASET_PATH, exist_ok=True)

# Feedback storage functions
def save_feedback_locally(conversation, satisfaction, feedback_text):
    """Save feedback to a local JSONL file"""
    # Create a unique ID for this feedback entry
    feedback_id = str(uuid.uuid4())
    
    # Create a timestamp
    timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
    
    # Prepare the feedback data
    feedback_data = {
        "id": feedback_id,
        "timestamp": timestamp,
        "conversation": conversation,
        "satisfaction": satisfaction,
        "feedback": feedback_text
    }
    
    # Save to local file
    feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
    with open(feedback_file, "a") as f:
        f.write(json.dumps(feedback_data) + "\n")
    
    return feedback_id

def push_feedback_to_hub(hf_token=None):
    """Push the local feedback data to HuggingFace as a dataset"""
    # Check if we have a token
    if hf_token is None:
        # Try to get token from environment variable
        hf_token = os.environ.get("HF_TOKEN")
        if hf_token is None:
            print("No HuggingFace token provided. Cannot push to Hub.")
            return False
    
    try:
        # Login to HuggingFace
        login(token=hf_token)
        
        # Check if we have data to push
        feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
        if not os.path.exists(feedback_file):
            print("No feedback data to push.")
            return False
        
        # Load data from the JSONL file
        with open(feedback_file, "r") as f:
            feedback_data = [json.loads(line) for line in f]
        
        # Create a dataset from the feedback data
        dataset = Dataset.from_list(feedback_data)
        
        # Push to Hub
        dataset.push_to_hub(
            DATASET_REPO,
            private=True  # Set to False if you want the dataset to be public
        )
        
        print(f"Feedback data pushed to {DATASET_REPO} successfully.")
        return True
    
    except Exception as e:
        print(f"Error pushing feedback data to Hub: {e}")
        return False

# Modified predict function to update conversation state
@spaces.GPU(duration=120)
def predict(message, history, temperature, top_p):
    # Update history with user message
    history.append({"role": "user", "content": message})
    
    
    input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    
    # Create a streamer
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    
    # Set up generation parameters
    generation_kwargs = {
        "input_ids": inputs,
        "max_new_tokens": 1024,
        "temperature": float(temperature),
        "top_p": float(top_p),
        "do_sample": True,
        "streamer": streamer,
    }
    
    # Run generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Yield from the streamer as tokens are generated
    partial_text = ""
    for new_text in streamer:
        partial_text += new_text
        yield partial_text
    
    # After full generation, update state with assistant's response
    history.append({"role": "assistant", "content": partial_text})
    return partial_text

# Function to handle the research feedback submission
def submit_research_feedback(conversation_state, satisfaction, feedback_text):
    """Save user feedback both locally and to HuggingFace Hub"""
    # Save locally first
    feedback_id = save_feedback_locally(conversation_state, satisfaction, feedback_text)
    
    # Get token from environment variable
    env_token = os.environ.get("HF_TOKEN")
    
    # Use environment token
    push_success = push_feedback_to_hub(env_token)
    
    if push_success:
        status_msg = "Thank you for your valuable feedback! Your insights have been saved to the dataset."
    else:
        status_msg = "Thank you for your feedback! It has been saved locally, but couldn't be pushed to the dataset. Please check server logs."
    
    return status_msg

# Create the Gradio blocks interface
with gr.Blocks() as demo:
    # State to track conversation history
    conversation_state = gr.State([])
    
    with gr.Row():
        with gr.Column(scale=3):
            # Custom chat function wrapper to update state
            def chat_with_state(message, history, state, temperature, top_p):
                for partial_response in predict(message, history, temperature, top_p):
                    # Update our state with each yield
                    state = history.copy()
                    yield partial_response, state
                state = history.copy()
                print(state)
                return partial_response, state
            
            # Create ChatInterface
            chatbot = gr.ChatInterface(
                chat_with_state,
                additional_inputs=[
                    conversation_state,
                    gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
                    gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
                ],
                additional_outputs=[conversation_state],
                type="messages"
            )
        
        with gr.Column(scale=1):
            report_button = gr.Button("Share Feedback", variant="primary")
    
    # Create the modal with feedback form components
    with Modal(visible=False) as feedback_modal:
        with gr.Column():
            gr.Markdown("## Research Preview Feedback")
            gr.Markdown("Thank you for testing our research model. Your feedback (positive or negative) helps us improve!")
            
            satisfaction = gr.Radio(
                ["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
                label="How would you rate your experience with this research model?",
                value="Neutral"
            )
            
            feedback_text = gr.Textbox(
                lines=5,
                label="Share your observations (strengths, weaknesses, suggestions):",
                placeholder="We welcome both positive feedback and constructive criticism to help improve this research prototype..."
            )
            
            submit_button = gr.Button("Submit Research Feedback", variant="primary")
            response_text = gr.Textbox(label="Status", interactive=False)
    
    # Connect the "Share Feedback" button to show the modal
    report_button.click(
        lambda: Modal(visible=True),
        None,
        feedback_modal
    )
    
    # Connect the submit button to the submit_research_feedback function with the current conversation state
    submit_button.click(
        submit_research_feedback,
        inputs=[conversation_state, satisfaction, feedback_text],
        outputs=response_text
    )

# Launch the demo
demo.launch()