Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,95 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStream
|
|
3 |
import gradio as gr
|
4 |
from threading import Thread
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from gradio_modal import Modal
|
|
|
7 |
|
|
|
8 |
checkpoint = "WillHeld/soft-raccoon"
|
9 |
device = "cuda"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
11 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
@spaces.GPU(duration=120)
|
14 |
def predict(message, history, temperature, top_p):
|
15 |
history.append({"role": "user", "content": message})
|
@@ -27,7 +109,6 @@ def predict(message, history, temperature, top_p):
|
|
27 |
"top_p": float(top_p),
|
28 |
"do_sample": True,
|
29 |
"streamer": streamer,
|
30 |
-
"eos_token_id": 128009,
|
31 |
}
|
32 |
|
33 |
# Run generation in a separate thread
|
@@ -40,13 +121,30 @@ def predict(message, history, temperature, top_p):
|
|
40 |
partial_text += new_text
|
41 |
yield partial_text
|
42 |
|
43 |
-
# Function to handle the
|
44 |
-
def
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
49 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
50 |
with gr.Row():
|
51 |
with gr.Column(scale=3):
|
52 |
chatbot = gr.ChatInterface(
|
@@ -58,28 +156,43 @@ with gr.Blocks() as demo:
|
|
58 |
type="messages"
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with gr.Column(scale=1):
|
62 |
-
report_button = gr.Button("
|
63 |
|
64 |
# Create the modal with feedback form components
|
65 |
with Modal(visible=False) as feedback_modal:
|
66 |
with gr.Column():
|
67 |
-
gr.Markdown("##
|
68 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
satisfaction = gr.Radio(
|
71 |
["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
|
72 |
-
label="How
|
73 |
value="Neutral"
|
74 |
)
|
75 |
|
76 |
feedback_text = gr.Textbox(
|
77 |
lines=5,
|
78 |
-
label="
|
79 |
-
placeholder="
|
80 |
)
|
81 |
|
82 |
-
submit_button = gr.Button("Submit Feedback", variant="primary")
|
83 |
response_text = gr.Textbox(label="Status", interactive=False)
|
84 |
|
85 |
# Connect the "File a Report" button to show the modal
|
@@ -89,11 +202,12 @@ with gr.Blocks() as demo:
|
|
89 |
feedback_modal
|
90 |
)
|
91 |
|
92 |
-
# Connect the submit button to the
|
93 |
submit_button.click(
|
94 |
-
|
95 |
-
inputs=[satisfaction, feedback_text],
|
96 |
outputs=response_text
|
97 |
)
|
98 |
|
|
|
99 |
demo.launch()
|
|
|
3 |
import gradio as gr
|
4 |
from threading import Thread
|
5 |
import os
|
6 |
+
import json
|
7 |
+
import uuid
|
8 |
+
from datasets import Dataset
|
9 |
+
from huggingface_hub import HfApi, login
|
10 |
+
import huggingface_hub
|
11 |
+
import time
|
12 |
+
|
13 |
from gradio_modal import Modal
|
14 |
+
import datasets
|
15 |
|
16 |
+
# Model setup
|
17 |
checkpoint = "WillHeld/soft-raccoon"
|
18 |
device = "cuda"
|
19 |
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
20 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
21 |
|
22 |
+
# Constants for dataset
|
23 |
+
DATASET_REPO = "WillHeld/marin-feedback" # Replace with your username
|
24 |
+
DATASET_PATH = "./feedback_data" # Local path to store feedback
|
25 |
+
DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
|
26 |
+
|
27 |
+
# Ensure feedback directory exists
|
28 |
+
os.makedirs(DATASET_PATH, exist_ok=True)
|
29 |
+
|
30 |
+
# Feedback storage functions
|
31 |
+
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
32 |
+
"""Save feedback to a local JSONL file"""
|
33 |
+
# Create a unique ID for this feedback entry
|
34 |
+
feedback_id = str(uuid.uuid4())
|
35 |
+
|
36 |
+
# Create a timestamp
|
37 |
+
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
38 |
+
|
39 |
+
# Prepare the feedback data
|
40 |
+
feedback_data = {
|
41 |
+
"id": feedback_id,
|
42 |
+
"timestamp": timestamp,
|
43 |
+
"conversation": conversation,
|
44 |
+
"satisfaction": satisfaction,
|
45 |
+
"feedback": feedback_text
|
46 |
+
}
|
47 |
+
|
48 |
+
# Save to local file
|
49 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
50 |
+
with open(feedback_file, "a") as f:
|
51 |
+
f.write(json.dumps(feedback_data) + "\n")
|
52 |
+
|
53 |
+
return feedback_id
|
54 |
+
|
55 |
+
def push_feedback_to_hub(hf_token=None):
|
56 |
+
"""Push the local feedback data to HuggingFace as a dataset"""
|
57 |
+
# Check if we have a token
|
58 |
+
if hf_token is None:
|
59 |
+
# Try to get token from environment variable
|
60 |
+
hf_token = os.environ.get("HF_TOKEN")
|
61 |
+
if hf_token is None:
|
62 |
+
print("No HuggingFace token provided. Cannot push to Hub.")
|
63 |
+
return False
|
64 |
+
|
65 |
+
try:
|
66 |
+
# Login to HuggingFace
|
67 |
+
login(token=hf_token)
|
68 |
+
|
69 |
+
# Check if we have data to push
|
70 |
+
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
71 |
+
if not os.path.exists(feedback_file):
|
72 |
+
print("No feedback data to push.")
|
73 |
+
return False
|
74 |
+
|
75 |
+
# Load data from the JSONL file
|
76 |
+
with open(feedback_file, "r") as f:
|
77 |
+
feedback_data = [json.loads(line) for line in f]
|
78 |
+
|
79 |
+
# Create a dataset from the feedback data
|
80 |
+
dataset = Dataset.from_list(feedback_data)
|
81 |
+
|
82 |
+
# Push to Hub
|
83 |
+
dataset.push_to_hub(
|
84 |
+
DATASET_REPO,
|
85 |
+
private=True # Set to False if you want the dataset to be public
|
86 |
+
)
|
87 |
+
|
88 |
+
print(f"Feedback data pushed to {DATASET_REPO} successfully.")
|
89 |
+
return True
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Error pushing feedback data to Hub: {e}")
|
93 |
+
return False
|
94 |
+
|
95 |
@spaces.GPU(duration=120)
|
96 |
def predict(message, history, temperature, top_p):
|
97 |
history.append({"role": "user", "content": message})
|
|
|
109 |
"top_p": float(top_p),
|
110 |
"do_sample": True,
|
111 |
"streamer": streamer,
|
|
|
112 |
}
|
113 |
|
114 |
# Run generation in a separate thread
|
|
|
121 |
partial_text += new_text
|
122 |
yield partial_text
|
123 |
|
124 |
+
# Function to handle the research feedback submission
|
125 |
+
def submit_research_feedback(conversation_history, satisfaction, feedback_text, hf_token=None):
|
126 |
+
"""Save user feedback both locally and to HuggingFace Hub"""
|
127 |
+
# Save locally first
|
128 |
+
feedback_id = save_feedback_locally(conversation_history, satisfaction, feedback_text)
|
129 |
+
|
130 |
+
# Get token from environment variable
|
131 |
+
env_token = os.environ.get("HF_TOKEN")
|
132 |
+
|
133 |
+
# Use environment token, ignoring any passed token
|
134 |
+
push_success = push_feedback_to_hub(env_token)
|
135 |
+
|
136 |
+
if push_success:
|
137 |
+
status_msg = "Thank you for your valuable feedback! Your insights have been saved to the dataset."
|
138 |
+
else:
|
139 |
+
status_msg = "Thank you for your feedback! It has been saved locally, but couldn't be pushed to the dataset. Please check server logs."
|
140 |
+
|
141 |
+
return status_msg
|
142 |
|
143 |
+
# Create the Gradio interface
|
144 |
with gr.Blocks() as demo:
|
145 |
+
# Store conversation history
|
146 |
+
conversation_state = gr.State([])
|
147 |
+
|
148 |
with gr.Row():
|
149 |
with gr.Column(scale=3):
|
150 |
chatbot = gr.ChatInterface(
|
|
|
156 |
type="messages"
|
157 |
)
|
158 |
|
159 |
+
# Update conversation_state with each new message
|
160 |
+
chatbot.submit_btn.click(
|
161 |
+
lambda history: history,
|
162 |
+
inputs=[chatbot.chat_history],
|
163 |
+
outputs=[conversation_state]
|
164 |
+
)
|
165 |
+
|
166 |
with gr.Column(scale=1):
|
167 |
+
report_button = gr.Button("Share Feedback", variant="primary")
|
168 |
|
169 |
# Create the modal with feedback form components
|
170 |
with Modal(visible=False) as feedback_modal:
|
171 |
with gr.Column():
|
172 |
+
gr.Markdown("## Research Preview Feedback")
|
173 |
+
gr.Markdown("Thank you for testing our research model. Your feedback (positive or negative) helps us improve!")
|
174 |
+
|
175 |
+
# Optional: HF Token for pushing to Hub
|
176 |
+
hf_token_input = gr.Textbox(
|
177 |
+
label="HuggingFace Token (Optional)",
|
178 |
+
placeholder="Enter your HF token to push feedback to dataset",
|
179 |
+
type="password",
|
180 |
+
visible=True # Set to False in production if using environment variables
|
181 |
+
)
|
182 |
|
183 |
satisfaction = gr.Radio(
|
184 |
["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
|
185 |
+
label="How would you rate your experience with this research model?",
|
186 |
value="Neutral"
|
187 |
)
|
188 |
|
189 |
feedback_text = gr.Textbox(
|
190 |
lines=5,
|
191 |
+
label="Share your observations (strengths, weaknesses, suggestions):",
|
192 |
+
placeholder="We welcome both positive feedback and constructive criticism to help improve this research prototype..."
|
193 |
)
|
194 |
|
195 |
+
submit_button = gr.Button("Submit Research Feedback", variant="primary")
|
196 |
response_text = gr.Textbox(label="Status", interactive=False)
|
197 |
|
198 |
# Connect the "File a Report" button to show the modal
|
|
|
202 |
feedback_modal
|
203 |
)
|
204 |
|
205 |
+
# Connect the submit button to the submit_research_feedback function
|
206 |
submit_button.click(
|
207 |
+
submit_research_feedback,
|
208 |
+
inputs=[conversation_state, satisfaction, feedback_text, hf_token_input],
|
209 |
outputs=response_text
|
210 |
)
|
211 |
|
212 |
+
# Launch the demo
|
213 |
demo.launch()
|