MM / app.py
Vanajamuthaiyan's picture
Create app.py
0e0cbcf verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True)
# Inference function
def generate_response(prompt, max_new_tokens=100):
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response[len(prompt):].strip()
# Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask me something..."),
gr.Slider(minimum=10, maximum=300, step=10, value=100, label="Max New Tokens"),
],
outputs=gr.Textbox(label="Response"),
title="Video-XL-2 Chatbot",
description="This chatbot uses the BAAI Video-XL-2 model to generate responses based on your input."
)
if __name__ == "__main__":
iface.launch()