Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True) | |
# Inference function | |
def generate_response(prompt, max_new_tokens=100): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_k=50, | |
top_p=0.95, | |
temperature=0.7, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response[len(prompt):].strip() | |
# Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask me something..."), | |
gr.Slider(minimum=10, maximum=300, step=10, value=100, label="Max New Tokens"), | |
], | |
outputs=gr.Textbox(label="Response"), | |
title="Video-XL-2 Chatbot", | |
description="This chatbot uses the BAAI Video-XL-2 model to generate responses based on your input." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |