import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("BAAI/Video-XL-2", trust_remote_code=True) # Inference function def generate_response(prompt, max_new_tokens=100): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=True, top_k=50, top_p=0.95, temperature=0.7, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response[len(prompt):].strip() # Gradio interface iface = gr.Interface( fn=generate_response, inputs=[ gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask me something..."), gr.Slider(minimum=10, maximum=300, step=10, value=100, label="Max New Tokens"), ], outputs=gr.Textbox(label="Response"), title="Video-XL-2 Chatbot", description="This chatbot uses the BAAI Video-XL-2 model to generate responses based on your input." ) if __name__ == "__main__": iface.launch()