|
|
|
import gc
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import types
|
|
from contextlib import contextmanager
|
|
from functools import partial
|
|
from mmgp import offload
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.cuda.amp as amp
|
|
import torch.distributed as dist
|
|
from tqdm import tqdm
|
|
from PIL import Image
|
|
import torchvision.transforms.functional as TF
|
|
import torch.nn.functional as F
|
|
from .distributed.fsdp import shard_model
|
|
from .modules.model import WanModel
|
|
from .modules.t5 import T5EncoderModel
|
|
from .modules.vae import WanVAE
|
|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
|
get_sampling_sigmas, retrieve_timesteps)
|
|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
from wan.modules.posemb_layers import get_rotary_pos_embed
|
|
from .utils.vace_preprocessor import VaceVideoProcessor
|
|
from wan.utils.basic_flowmatch import FlowMatchScheduler
|
|
from wan.utils.utils import get_outpainting_frame_location
|
|
|
|
def optimized_scale(positive_flat, negative_flat):
|
|
|
|
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
|
|
|
|
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
|
|
|
|
|
|
st_star = dot_product / squared_norm
|
|
|
|
return st_star
|
|
|
|
|
|
class WanT2V:
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
checkpoint_dir,
|
|
rank=0,
|
|
model_filename = None,
|
|
model_type = None,
|
|
base_model_type = None,
|
|
text_encoder_filename = None,
|
|
quantizeTransformer = False,
|
|
save_quantized = False,
|
|
dtype = torch.bfloat16,
|
|
VAE_dtype = torch.float32,
|
|
mixed_precision_transformer = False
|
|
):
|
|
self.device = torch.device(f"cuda")
|
|
self.config = config
|
|
self.rank = rank
|
|
self.dtype = dtype
|
|
self.num_train_timesteps = config.num_train_timesteps
|
|
self.param_dtype = config.param_dtype
|
|
|
|
self.text_encoder = T5EncoderModel(
|
|
text_len=config.text_len,
|
|
dtype=config.t5_dtype,
|
|
device=torch.device('cpu'),
|
|
checkpoint_path=text_encoder_filename,
|
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
|
shard_fn= None)
|
|
|
|
self.vae_stride = config.vae_stride
|
|
self.patch_size = config.patch_size
|
|
|
|
self.vae = WanVAE(
|
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
|
|
device=self.device)
|
|
|
|
logging.info(f"Creating WanModel from {model_filename[-1]}")
|
|
from mmgp import offload
|
|
|
|
|
|
|
|
|
|
base_config_file = f"configs/{base_model_type}.json"
|
|
forcedConfigPath = base_config_file if len(model_filename) > 1 else None
|
|
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath)
|
|
|
|
|
|
|
|
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
|
|
|
|
|
|
offload.change_dtype(self.model, dtype, True)
|
|
|
|
|
|
|
|
self.model.eval().requires_grad_(False)
|
|
if save_quantized:
|
|
from wgp import save_quantized_model
|
|
save_quantized_model(self.model, model_type, model_filename[1 if base_model_type=="fantasy" else 0], dtype, base_config_file)
|
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt
|
|
|
|
if base_model_type in ["vace_14B", "vace_1.3B"]:
|
|
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
|
|
min_area=480*832,
|
|
max_area=480*832,
|
|
min_fps=config.sample_fps,
|
|
max_fps=config.sample_fps,
|
|
zero_start=True,
|
|
seq_len=32760,
|
|
keep_last=True)
|
|
|
|
self.adapt_vace_model()
|
|
|
|
def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None):
|
|
if ref_images is None:
|
|
ref_images = [None] * len(frames)
|
|
else:
|
|
assert len(frames) == len(ref_images)
|
|
|
|
if masks is None:
|
|
latents = self.vae.encode(frames, tile_size = tile_size)
|
|
else:
|
|
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
|
|
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
|
|
inactive = self.vae.encode(inactive, tile_size = tile_size)
|
|
|
|
if overlapped_latents != None and False :
|
|
|
|
for t in inactive:
|
|
t[:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents
|
|
|
|
reactive = self.vae.encode(reactive, tile_size = tile_size)
|
|
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
|
|
|
|
cat_latents = []
|
|
for latent, refs in zip(latents, ref_images):
|
|
if refs is not None:
|
|
if masks is None:
|
|
ref_latent = self.vae.encode(refs, tile_size = tile_size)
|
|
else:
|
|
ref_latent = self.vae.encode(refs, tile_size = tile_size)
|
|
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
|
|
assert all([x.shape[1] == 1 for x in ref_latent])
|
|
latent = torch.cat([*ref_latent, latent], dim=1)
|
|
cat_latents.append(latent)
|
|
return cat_latents
|
|
|
|
def vace_encode_masks(self, masks, ref_images=None):
|
|
if ref_images is None:
|
|
ref_images = [None] * len(masks)
|
|
else:
|
|
assert len(masks) == len(ref_images)
|
|
|
|
result_masks = []
|
|
for mask, refs in zip(masks, ref_images):
|
|
c, depth, height, width = mask.shape
|
|
new_depth = int((depth + 3) // self.vae_stride[0])
|
|
height = 2 * (int(height) // (self.vae_stride[1] * 2))
|
|
width = 2 * (int(width) // (self.vae_stride[2] * 2))
|
|
|
|
|
|
mask = mask[0, :, :, :]
|
|
mask = mask.view(
|
|
depth, height, self.vae_stride[1], width, self.vae_stride[1]
|
|
)
|
|
mask = mask.permute(2, 4, 0, 1, 3)
|
|
mask = mask.reshape(
|
|
self.vae_stride[1] * self.vae_stride[2], depth, height, width
|
|
)
|
|
|
|
|
|
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
|
|
|
|
if refs is not None:
|
|
length = len(refs)
|
|
mask_pad = torch.zeros_like(mask[:, :length, :, :])
|
|
mask = torch.cat((mask_pad, mask), dim=1)
|
|
result_masks.append(mask)
|
|
return result_masks
|
|
|
|
def vace_latent(self, z, m):
|
|
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
|
|
|
|
def fit_image_into_canvas(self, ref_img, image_size, canvas_tf_bg, device, fill_max = False, outpainting_dims = None, return_mask = False):
|
|
from wan.utils.utils import save_image
|
|
ref_width, ref_height = ref_img.size
|
|
if (ref_height, ref_width) == image_size and outpainting_dims == None:
|
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
|
canvas = torch.zeros_like(ref_img) if return_mask else None
|
|
else:
|
|
if outpainting_dims != None:
|
|
final_height, final_width = image_size
|
|
canvas_height, canvas_width, margin_top, margin_left = get_outpainting_frame_location(final_height, final_width, outpainting_dims, 8)
|
|
else:
|
|
canvas_height, canvas_width = image_size
|
|
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
|
new_height = int(ref_height * scale)
|
|
new_width = int(ref_width * scale)
|
|
if fill_max and (canvas_height - new_height) < 16:
|
|
new_height = canvas_height
|
|
if fill_max and (canvas_width - new_width) < 16:
|
|
new_width = canvas_width
|
|
top = (canvas_height - new_height) // 2
|
|
left = (canvas_width - new_width) // 2
|
|
ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS)
|
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
|
if outpainting_dims != None:
|
|
canvas = torch.full((3, 1, final_height, final_width), canvas_tf_bg, dtype= torch.float, device=device)
|
|
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img
|
|
else:
|
|
canvas = torch.full((3, 1, canvas_height, canvas_width), canvas_tf_bg, dtype= torch.float, device=device)
|
|
canvas[:, :, top:top + new_height, left:left + new_width] = ref_img
|
|
ref_img = canvas
|
|
canvas = None
|
|
if return_mask:
|
|
if outpainting_dims != None:
|
|
canvas = torch.ones((3, 1, final_height, final_width), dtype= torch.float, device=device)
|
|
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0
|
|
else:
|
|
canvas = torch.ones((3, 1, canvas_height, canvas_width), dtype= torch.float, device=device)
|
|
canvas[:, :, top:top + new_height, left:left + new_width] = 0
|
|
canvas = canvas.to(device)
|
|
return ref_img.to(device), canvas
|
|
|
|
def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size, device, keep_frames= [], start_frame = 0, fit_into_canvas = None, pre_src_video = None, inject_frames = [], outpainting_dims = None, any_background_ref = False):
|
|
image_sizes = []
|
|
trim_video = len(keep_frames)
|
|
def conv_tensor(t, device):
|
|
return t.float().div_(127.5).add_(-1).permute(3, 0, 1, 2).to(device)
|
|
|
|
for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
|
|
prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
|
|
num_frames = total_frames - prepend_count
|
|
num_frames = min(num_frames, trim_video) if trim_video > 0 else num_frames
|
|
if sub_src_mask is not None and sub_src_video is not None:
|
|
src_video[i] = conv_tensor(sub_src_video[:num_frames], device)
|
|
src_mask[i] = conv_tensor(sub_src_mask[:num_frames], device)
|
|
|
|
|
|
if prepend_count > 0:
|
|
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
|
|
src_mask[i] = torch.cat( [torch.full_like(sub_pre_src_video, -1.0), src_mask[i]] ,1)
|
|
src_video_shape = src_video[i].shape
|
|
if src_video_shape[1] != total_frames:
|
|
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
|
|
image_sizes.append(src_video[i].shape[2:])
|
|
elif sub_src_video is None:
|
|
if prepend_count > 0:
|
|
src_video[i] = torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
|
|
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
|
|
else:
|
|
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
|
|
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
|
image_sizes.append(image_size)
|
|
else:
|
|
src_video[i] = conv_tensor(sub_src_video[:num_frames], device)
|
|
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
|
if prepend_count > 0:
|
|
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
|
|
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
|
|
src_video_shape = src_video[i].shape
|
|
if src_video_shape[1] != total_frames:
|
|
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
|
|
image_sizes.append(src_video[i].shape[2:])
|
|
for k, keep in enumerate(keep_frames):
|
|
if not keep:
|
|
src_video[i][:, k:k+1] = 0
|
|
src_mask[i][:, k:k+1] = 1
|
|
|
|
for k, frame in enumerate(inject_frames):
|
|
if frame != None:
|
|
src_video[i][:, k:k+1], src_mask[i][:, k:k+1] = self.fit_image_into_canvas(frame, image_size, 0, device, True, outpainting_dims, return_mask= True)
|
|
|
|
|
|
self.background_mask = None
|
|
for i, ref_images in enumerate(src_ref_images):
|
|
if ref_images is not None:
|
|
image_size = image_sizes[i]
|
|
for j, ref_img in enumerate(ref_images):
|
|
if ref_img is not None and not torch.is_tensor(ref_img):
|
|
if j==0 and any_background_ref:
|
|
if self.background_mask == None: self.background_mask = [None] * len(src_ref_images)
|
|
src_ref_images[i][j], self.background_mask[i] = self.fit_image_into_canvas(ref_img, image_size, 0, device, True, outpainting_dims, return_mask= True)
|
|
else:
|
|
src_ref_images[i][j], _ = self.fit_image_into_canvas(ref_img, image_size, 1, device)
|
|
if self.background_mask != None:
|
|
self.background_mask = [ item if item != None else self.background_mask[0] for item in self.background_mask ]
|
|
return src_video, src_mask, src_ref_images
|
|
|
|
def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
|
|
if ref_images is None:
|
|
ref_images = [None] * len(zs)
|
|
|
|
|
|
|
|
trimed_zs = []
|
|
for z, refs in zip(zs, ref_images):
|
|
if refs is not None:
|
|
z = z[:, len(refs):, :, :]
|
|
trimed_zs.append(z)
|
|
|
|
return self.vae.decode(trimed_zs, tile_size= tile_size)
|
|
|
|
def get_vae_latents(self, ref_images, device, tile_size= 0):
|
|
ref_vae_latents = []
|
|
for ref_image in ref_images:
|
|
ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device)
|
|
img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size)
|
|
ref_vae_latents.append(img_vae_latent[0])
|
|
|
|
return torch.cat(ref_vae_latents, dim=1)
|
|
|
|
def generate(self,
|
|
input_prompt,
|
|
input_frames= None,
|
|
input_masks = None,
|
|
input_ref_images = None,
|
|
input_video=None,
|
|
target_camera=None,
|
|
context_scale=None,
|
|
width = 1280,
|
|
height = 720,
|
|
fit_into_canvas = True,
|
|
frame_num=81,
|
|
shift=5.0,
|
|
sample_solver='unipc',
|
|
sampling_steps=50,
|
|
guide_scale=5.0,
|
|
n_prompt="",
|
|
seed=-1,
|
|
offload_model=True,
|
|
callback = None,
|
|
enable_RIFLEx = None,
|
|
VAE_tile_size = 0,
|
|
joint_pass = False,
|
|
slg_layers = None,
|
|
slg_start = 0.0,
|
|
slg_end = 1.0,
|
|
cfg_star_switch = True,
|
|
cfg_zero_step = 5,
|
|
overlapped_latents = None,
|
|
return_latent_slice = None,
|
|
overlap_noise = 0,
|
|
conditioning_latents_size = 0,
|
|
model_filename = None,
|
|
**bbargs
|
|
):
|
|
r"""
|
|
Generates video frames from text prompt using diffusion process.
|
|
|
|
Args:
|
|
input_prompt (`str`):
|
|
Text prompt for content generation
|
|
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
|
Controls video resolution, (width,height).
|
|
frame_num (`int`, *optional*, defaults to 81):
|
|
How many frames to sample from a video. The number should be 4n+1
|
|
shift (`float`, *optional*, defaults to 5.0):
|
|
Noise schedule shift parameter. Affects temporal dynamics
|
|
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
|
Solver used to sample the video.
|
|
sampling_steps (`int`, *optional*, defaults to 40):
|
|
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
|
guide_scale (`float`, *optional*, defaults 5.0):
|
|
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
|
n_prompt (`str`, *optional*, defaults to ""):
|
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
|
seed (`int`, *optional*, defaults to -1):
|
|
Random seed for noise generation. If -1, use random seed.
|
|
offload_model (`bool`, *optional*, defaults to True):
|
|
If True, offloads models to CPU during generation to save VRAM
|
|
|
|
Returns:
|
|
torch.Tensor:
|
|
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
|
- C: Color channels (3 for RGB)
|
|
- N: Number of frames (81)
|
|
- H: Frame height (from size)
|
|
- W: Frame width from size)
|
|
"""
|
|
|
|
vace = "Vace" in model_filename
|
|
|
|
if n_prompt == "":
|
|
n_prompt = self.sample_neg_prompt
|
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
|
seed_g = torch.Generator(device=self.device)
|
|
seed_g.manual_seed(seed)
|
|
|
|
if self._interrupt:
|
|
return None
|
|
context = self.text_encoder([input_prompt], self.device)[0]
|
|
context_null = self.text_encoder([n_prompt], self.device)[0]
|
|
context = context.to(self.dtype)
|
|
context_null = context_null.to(self.dtype)
|
|
input_ref_images_neg = None
|
|
phantom = False
|
|
|
|
if target_camera != None:
|
|
width = input_video.shape[2]
|
|
height = input_video.shape[1]
|
|
input_video = input_video.to(dtype=self.dtype , device=self.device)
|
|
input_video = input_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.)
|
|
source_latents = self.vae.encode([input_video])[0]
|
|
del input_video
|
|
|
|
from wan.utils.cammmaster_tools import get_camera_embedding
|
|
cam_emb = get_camera_embedding(target_camera)
|
|
cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
|
|
|
|
if vace :
|
|
|
|
input_frames = [u.to(self.device) for u in input_frames]
|
|
input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images]
|
|
input_masks = [u.to(self.device) for u in input_masks]
|
|
if self.background_mask != None: self.background_mask = [m.to(self.device) for m in self.background_mask]
|
|
previous_latents = None
|
|
|
|
|
|
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents )
|
|
m0 = self.vace_encode_masks(input_masks, input_ref_images)
|
|
if self.background_mask != None:
|
|
zbg = self.vace_encode_frames([ref_img[0] for ref_img in input_ref_images], None, masks=self.background_mask, tile_size = VAE_tile_size )
|
|
mbg = self.vace_encode_masks(self.background_mask, None)
|
|
for zz0, mm0, zzbg, mmbg in zip(z0, m0, zbg, mbg):
|
|
zz0[:, 0:1] = zzbg
|
|
mm0[:, 0:1] = mmbg
|
|
|
|
self.background_mask = zz0 = mm0 = zzbg = mmbg = None
|
|
z = self.vace_latent(z0, m0)
|
|
|
|
target_shape = list(z0[0].shape)
|
|
target_shape[0] = int(target_shape[0] / 2)
|
|
else:
|
|
if input_ref_images != None:
|
|
phantom = True
|
|
input_ref_images = self.get_vae_latents(input_ref_images, self.device)
|
|
input_ref_images_neg = torch.zeros_like(input_ref_images)
|
|
F = frame_num
|
|
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + (input_ref_images.shape[1] if input_ref_images != None else 0),
|
|
height // self.vae_stride[1],
|
|
width // self.vae_stride[2])
|
|
|
|
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
|
(self.patch_size[1] * self.patch_size[2]) *
|
|
target_shape[1])
|
|
|
|
if self._interrupt:
|
|
return None
|
|
|
|
noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ]
|
|
|
|
|
|
|
|
if False:
|
|
sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True)
|
|
timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74, 0])[:sampling_steps].to(self.device)
|
|
sample_scheduler.timesteps =timesteps
|
|
elif sample_solver == 'unipc':
|
|
sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False)
|
|
sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift)
|
|
|
|
timesteps = sample_scheduler.timesteps
|
|
elif sample_solver == 'dpm++':
|
|
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
|
timesteps, _ = retrieve_timesteps(
|
|
sample_scheduler,
|
|
device=self.device,
|
|
sigmas=sampling_sigmas)
|
|
else:
|
|
raise NotImplementedError("Unsupported solver.")
|
|
|
|
|
|
latents = noise[0]
|
|
del noise
|
|
batch_size = 1
|
|
if target_camera != None:
|
|
shape = list(latents.shape[1:])
|
|
shape[0] *= 2
|
|
freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False)
|
|
else:
|
|
freqs = get_rotary_pos_embed(latents.shape[1:], enable_RIFLEx= enable_RIFLEx)
|
|
|
|
kwargs = {'freqs': freqs, 'pipeline': self, 'callback': callback}
|
|
|
|
if target_camera != None:
|
|
kwargs.update({'cam_emb': cam_emb})
|
|
|
|
if vace:
|
|
ref_images_count = len(input_ref_images[0]) if input_ref_images != None and input_ref_images[0] != None else 0
|
|
context_scale = context_scale if context_scale != None else [1.0] * len(z)
|
|
kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale})
|
|
if overlapped_latents != None :
|
|
overlapped_latents_size = overlapped_latents.shape[1] + 1
|
|
|
|
z_reactive = [ zz[0:16, 0:overlapped_latents_size + ref_images_count].clone() for zz in z]
|
|
|
|
|
|
if self.model.enable_cache:
|
|
x_count = 3 if phantom else 2
|
|
self.model.previous_residual = [None] * x_count
|
|
self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.teacache_multiplier)
|
|
if callback != None:
|
|
callback(-1, None, True)
|
|
|
|
offload.shared_state["_chipmunk"] = False
|
|
chipmunk = offload.shared_state.get("_chipmunk", False)
|
|
if chipmunk:
|
|
self.model.setup_chipmunk()
|
|
|
|
for i, t in enumerate(tqdm(timesteps)):
|
|
timestep = [t]
|
|
if overlapped_latents != None :
|
|
overlap_noise_factor = overlap_noise / 1000
|
|
latent_noise_factor = t / 1000
|
|
for zz, zz_r, ll in zip(z, z_reactive, [latents, None]):
|
|
zz[0:16, ref_images_count:overlapped_latents_size + ref_images_count] = zz_r[:, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(zz_r[:, ref_images_count:] ) * overlap_noise_factor
|
|
if ll != None:
|
|
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r * (1.0 - latent_noise_factor) + torch.randn_like(zz_r ) * latent_noise_factor
|
|
|
|
if target_camera != None:
|
|
latent_model_input = torch.cat([latents, source_latents], dim=1)
|
|
else:
|
|
latent_model_input = latents
|
|
kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None
|
|
|
|
offload.set_step_no_for_lora(self.model, i)
|
|
timestep = torch.stack(timestep)
|
|
kwargs["current_step"] = i
|
|
kwargs["t"] = timestep
|
|
if guide_scale == 1:
|
|
noise_pred = self.model( [latent_model_input], x_id = 0, context = [context], **kwargs)[0]
|
|
if self._interrupt:
|
|
return None
|
|
elif joint_pass:
|
|
if phantom:
|
|
pos_it, pos_i, neg = self.model(
|
|
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ] * 2 +
|
|
[ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1)],
|
|
context = [context, context_null, context_null], **kwargs)
|
|
else:
|
|
noise_pred_cond, noise_pred_uncond = self.model(
|
|
[latent_model_input, latent_model_input], context = [context, context_null], **kwargs)
|
|
if self._interrupt:
|
|
return None
|
|
else:
|
|
if phantom:
|
|
pos_it = self.model(
|
|
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 0, context = [context], **kwargs
|
|
)[0]
|
|
if self._interrupt:
|
|
return None
|
|
pos_i = self.model(
|
|
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 1, context = [context_null],**kwargs
|
|
)[0]
|
|
if self._interrupt:
|
|
return None
|
|
neg = self.model(
|
|
[ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1) ], x_id = 2, context = [context_null], **kwargs
|
|
)[0]
|
|
if self._interrupt:
|
|
return None
|
|
else:
|
|
noise_pred_cond = self.model(
|
|
[latent_model_input], x_id = 0, context = [context], **kwargs)[0]
|
|
if self._interrupt:
|
|
return None
|
|
noise_pred_uncond = self.model(
|
|
[latent_model_input], x_id = 1, context = [context_null], **kwargs)[0]
|
|
if self._interrupt:
|
|
return None
|
|
|
|
|
|
|
|
|
|
if guide_scale == 1:
|
|
pass
|
|
elif phantom:
|
|
guide_scale_img= 5.0
|
|
guide_scale_text= guide_scale
|
|
noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i)
|
|
else:
|
|
noise_pred_text = noise_pred_cond
|
|
if cfg_star_switch:
|
|
positive_flat = noise_pred_text.view(batch_size, -1)
|
|
negative_flat = noise_pred_uncond.view(batch_size, -1)
|
|
|
|
alpha = optimized_scale(positive_flat,negative_flat)
|
|
alpha = alpha.view(batch_size, 1, 1, 1)
|
|
|
|
if (i <= cfg_zero_step):
|
|
noise_pred = noise_pred_text*0.
|
|
else:
|
|
noise_pred_uncond *= alpha
|
|
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)
|
|
noise_pred_uncond, noise_pred_cond, noise_pred_text, pos_it, pos_i, neg = None, None, None, None, None, None
|
|
scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g}
|
|
temp_x0 = sample_scheduler.step(
|
|
noise_pred[:, :target_shape[1]].unsqueeze(0),
|
|
t,
|
|
latents.unsqueeze(0),
|
|
|
|
**scheduler_kwargs)[0]
|
|
latents = temp_x0.squeeze(0)
|
|
del temp_x0
|
|
|
|
if callback is not None:
|
|
callback(i, latents, False)
|
|
|
|
x0 = [latents]
|
|
|
|
if chipmunk:
|
|
self.model.release_chipmunk()
|
|
|
|
if return_latent_slice != None:
|
|
if overlapped_latents != None:
|
|
|
|
for zz, zz_r, ll in zip(z, z_reactive, [latents]):
|
|
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r
|
|
|
|
latent_slice = latents[:, return_latent_slice].clone()
|
|
if input_frames == None:
|
|
if phantom:
|
|
|
|
x0 = [x0_[:,:-input_ref_images.shape[1]] for x0_ in x0]
|
|
videos = self.vae.decode(x0, VAE_tile_size)
|
|
else:
|
|
|
|
videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
|
|
if return_latent_slice != None:
|
|
return { "x" : videos[0], "latent_slice" : latent_slice }
|
|
return videos[0]
|
|
|
|
def adapt_vace_model(self):
|
|
model = self.model
|
|
modules_dict= { k: m for k, m in model.named_modules()}
|
|
for model_layer, vace_layer in model.vace_layers_mapping.items():
|
|
module = modules_dict[f"vace_blocks.{vace_layer}"]
|
|
target = modules_dict[f"blocks.{model_layer}"]
|
|
setattr(target, "vace", module )
|
|
delattr(model, "vace_blocks") |