File size: 34,220 Bytes
78360e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial
from mmgp import offload
import torch
import torch.nn as nn
import torch.cuda.amp as amp
import torch.distributed as dist
from tqdm import tqdm
from PIL import Image
import torchvision.transforms.functional as TF
import torch.nn.functional as F
from .distributed.fsdp import shard_model
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from wan.modules.posemb_layers import get_rotary_pos_embed
from .utils.vace_preprocessor import VaceVideoProcessor
from wan.utils.basic_flowmatch import FlowMatchScheduler
from wan.utils.utils import get_outpainting_frame_location
def optimized_scale(positive_flat, negative_flat):
# Calculate dot production
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
# Squared norm of uncondition
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
st_star = dot_product / squared_norm
return st_star
class WanT2V:
def __init__(
self,
config,
checkpoint_dir,
rank=0,
model_filename = None,
model_type = None,
base_model_type = None,
text_encoder_filename = None,
quantizeTransformer = False,
save_quantized = False,
dtype = torch.bfloat16,
VAE_dtype = torch.float32,
mixed_precision_transformer = False
):
self.device = torch.device(f"cuda")
self.config = config
self.rank = rank
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=text_encoder_filename,
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn= None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
device=self.device)
logging.info(f"Creating WanModel from {model_filename[-1]}")
from mmgp import offload
# model_filename = "c:/temp/vace1.3/diffusion_pytorch_model.safetensors"
# model_filename = "Vacefusionix_quanto_fp16_int8.safetensors"
# model_filename = "c:/temp/t2v/diffusion_pytorch_model-00001-of-00006.safetensors"
# config_filename= "c:/temp/t2v/t2v.json"
base_config_file = f"configs/{base_model_type}.json"
forcedConfigPath = base_config_file if len(model_filename) > 1 else None
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath=base_config_file , forcedConfigPath= forcedConfigPath)
# offload.load_model_data(self.model, "c:/temp/Phantom-Wan-1.3B.pth")
# self.model.to(torch.bfloat16)
# self.model.cpu()
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
# dtype = torch.bfloat16
# offload.load_model_data(self.model, "ckpts/Wan14BT2VFusioniX_fp16.safetensors")
offload.change_dtype(self.model, dtype, True)
# offload.save_model(self.model, "wan2.1_selforcing_fp16.safetensors", config_file_path=base_config_file)
# offload.save_model(self.model, "wan2.1_text2video_14B_mbf16.safetensors", config_file_path=base_config_file)
# offload.save_model(self.model, "wan2.1_text2video_14B_quanto_mfp16_int8.safetensors", do_quantize=True, config_file_path=base_config_file)
self.model.eval().requires_grad_(False)
if save_quantized:
from wgp import save_quantized_model
save_quantized_model(self.model, model_type, model_filename[1 if base_model_type=="fantasy" else 0], dtype, base_config_file)
self.sample_neg_prompt = config.sample_neg_prompt
if base_model_type in ["vace_14B", "vace_1.3B"]:
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
min_area=480*832,
max_area=480*832,
min_fps=config.sample_fps,
max_fps=config.sample_fps,
zero_start=True,
seq_len=32760,
keep_last=True)
self.adapt_vace_model()
def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0, overlapped_latents = None):
if ref_images is None:
ref_images = [None] * len(frames)
else:
assert len(frames) == len(ref_images)
if masks is None:
latents = self.vae.encode(frames, tile_size = tile_size)
else:
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
inactive = self.vae.encode(inactive, tile_size = tile_size)
if overlapped_latents != None and False :
# inactive[0][:, 0:1] = self.vae.encode([frames[0][:, 0:1]], tile_size = tile_size)[0] # redundant
for t in inactive:
t[:, 1:overlapped_latents.shape[1] + 1] = overlapped_latents
reactive = self.vae.encode(reactive, tile_size = tile_size)
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
cat_latents = []
for latent, refs in zip(latents, ref_images):
if refs is not None:
if masks is None:
ref_latent = self.vae.encode(refs, tile_size = tile_size)
else:
ref_latent = self.vae.encode(refs, tile_size = tile_size)
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
assert all([x.shape[1] == 1 for x in ref_latent])
latent = torch.cat([*ref_latent, latent], dim=1)
cat_latents.append(latent)
return cat_latents
def vace_encode_masks(self, masks, ref_images=None):
if ref_images is None:
ref_images = [None] * len(masks)
else:
assert len(masks) == len(ref_images)
result_masks = []
for mask, refs in zip(masks, ref_images):
c, depth, height, width = mask.shape
new_depth = int((depth + 3) // self.vae_stride[0]) # nb latents token without (ref tokens not included)
height = 2 * (int(height) // (self.vae_stride[1] * 2))
width = 2 * (int(width) // (self.vae_stride[2] * 2))
# reshape
mask = mask[0, :, :, :]
mask = mask.view(
depth, height, self.vae_stride[1], width, self.vae_stride[1]
) # depth, height, 8, width, 8
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
mask = mask.reshape(
self.vae_stride[1] * self.vae_stride[2], depth, height, width
) # 8*8, depth, height, width
# interpolation
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
if refs is not None:
length = len(refs)
mask_pad = torch.zeros_like(mask[:, :length, :, :])
mask = torch.cat((mask_pad, mask), dim=1)
result_masks.append(mask)
return result_masks
def vace_latent(self, z, m):
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
def fit_image_into_canvas(self, ref_img, image_size, canvas_tf_bg, device, fill_max = False, outpainting_dims = None, return_mask = False):
from wan.utils.utils import save_image
ref_width, ref_height = ref_img.size
if (ref_height, ref_width) == image_size and outpainting_dims == None:
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
canvas = torch.zeros_like(ref_img) if return_mask else None
else:
if outpainting_dims != None:
final_height, final_width = image_size
canvas_height, canvas_width, margin_top, margin_left = get_outpainting_frame_location(final_height, final_width, outpainting_dims, 8)
else:
canvas_height, canvas_width = image_size
scale = min(canvas_height / ref_height, canvas_width / ref_width)
new_height = int(ref_height * scale)
new_width = int(ref_width * scale)
if fill_max and (canvas_height - new_height) < 16:
new_height = canvas_height
if fill_max and (canvas_width - new_width) < 16:
new_width = canvas_width
top = (canvas_height - new_height) // 2
left = (canvas_width - new_width) // 2
ref_img = ref_img.resize((new_width, new_height), resample=Image.Resampling.LANCZOS)
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
if outpainting_dims != None:
canvas = torch.full((3, 1, final_height, final_width), canvas_tf_bg, dtype= torch.float, device=device) # [-1, 1]
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = ref_img
else:
canvas = torch.full((3, 1, canvas_height, canvas_width), canvas_tf_bg, dtype= torch.float, device=device) # [-1, 1]
canvas[:, :, top:top + new_height, left:left + new_width] = ref_img
ref_img = canvas
canvas = None
if return_mask:
if outpainting_dims != None:
canvas = torch.ones((3, 1, final_height, final_width), dtype= torch.float, device=device) # [-1, 1]
canvas[:, :, margin_top + top:margin_top + top + new_height, margin_left + left:margin_left + left + new_width] = 0
else:
canvas = torch.ones((3, 1, canvas_height, canvas_width), dtype= torch.float, device=device) # [-1, 1]
canvas[:, :, top:top + new_height, left:left + new_width] = 0
canvas = canvas.to(device)
return ref_img.to(device), canvas
def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size, device, keep_frames= [], start_frame = 0, fit_into_canvas = None, pre_src_video = None, inject_frames = [], outpainting_dims = None, any_background_ref = False):
image_sizes = []
trim_video = len(keep_frames)
def conv_tensor(t, device):
return t.float().div_(127.5).add_(-1).permute(3, 0, 1, 2).to(device)
for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)):
prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1]
num_frames = total_frames - prepend_count
num_frames = min(num_frames, trim_video) if trim_video > 0 else num_frames
if sub_src_mask is not None and sub_src_video is not None:
src_video[i] = conv_tensor(sub_src_video[:num_frames], device)
src_mask[i] = conv_tensor(sub_src_mask[:num_frames], device)
# src_video is [-1, 1] (at this function output), 0 = inpainting area (in fact 127 in [0, 255])
# src_mask is [-1, 1] (at this function output), 0 = preserve original video (in fact 127 in [0, 255]) and 1 = Inpainting (in fact 255 in [0, 255])
if prepend_count > 0:
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
src_mask[i] = torch.cat( [torch.full_like(sub_pre_src_video, -1.0), src_mask[i]] ,1)
src_video_shape = src_video[i].shape
if src_video_shape[1] != total_frames:
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
image_sizes.append(src_video[i].shape[2:])
elif sub_src_video is None:
if prepend_count > 0:
src_video[i] = torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1)
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1)
else:
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
image_sizes.append(image_size)
else:
src_video[i] = conv_tensor(sub_src_video[:num_frames], device)
src_mask[i] = torch.ones_like(src_video[i], device=device)
if prepend_count > 0:
src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1)
src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1)
src_video_shape = src_video[i].shape
if src_video_shape[1] != total_frames:
src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
image_sizes.append(src_video[i].shape[2:])
for k, keep in enumerate(keep_frames):
if not keep:
src_video[i][:, k:k+1] = 0
src_mask[i][:, k:k+1] = 1
for k, frame in enumerate(inject_frames):
if frame != None:
src_video[i][:, k:k+1], src_mask[i][:, k:k+1] = self.fit_image_into_canvas(frame, image_size, 0, device, True, outpainting_dims, return_mask= True)
self.background_mask = None
for i, ref_images in enumerate(src_ref_images):
if ref_images is not None:
image_size = image_sizes[i]
for j, ref_img in enumerate(ref_images):
if ref_img is not None and not torch.is_tensor(ref_img):
if j==0 and any_background_ref:
if self.background_mask == None: self.background_mask = [None] * len(src_ref_images)
src_ref_images[i][j], self.background_mask[i] = self.fit_image_into_canvas(ref_img, image_size, 0, device, True, outpainting_dims, return_mask= True)
else:
src_ref_images[i][j], _ = self.fit_image_into_canvas(ref_img, image_size, 1, device)
if self.background_mask != None:
self.background_mask = [ item if item != None else self.background_mask[0] for item in self.background_mask ] # deplicate background mask with double control net since first controlnet image ref modifed by ref
return src_video, src_mask, src_ref_images
def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
if ref_images is None:
ref_images = [None] * len(zs)
# else:
# assert len(zs) == len(ref_images)
trimed_zs = []
for z, refs in zip(zs, ref_images):
if refs is not None:
z = z[:, len(refs):, :, :]
trimed_zs.append(z)
return self.vae.decode(trimed_zs, tile_size= tile_size)
def get_vae_latents(self, ref_images, device, tile_size= 0):
ref_vae_latents = []
for ref_image in ref_images:
ref_image = TF.to_tensor(ref_image).sub_(0.5).div_(0.5).to(self.device)
img_vae_latent = self.vae.encode([ref_image.unsqueeze(1)], tile_size= tile_size)
ref_vae_latents.append(img_vae_latent[0])
return torch.cat(ref_vae_latents, dim=1)
def generate(self,
input_prompt,
input_frames= None,
input_masks = None,
input_ref_images = None,
input_video=None,
target_camera=None,
context_scale=None,
width = 1280,
height = 720,
fit_into_canvas = True,
frame_num=81,
shift=5.0,
sample_solver='unipc',
sampling_steps=50,
guide_scale=5.0,
n_prompt="",
seed=-1,
offload_model=True,
callback = None,
enable_RIFLEx = None,
VAE_tile_size = 0,
joint_pass = False,
slg_layers = None,
slg_start = 0.0,
slg_end = 1.0,
cfg_star_switch = True,
cfg_zero_step = 5,
overlapped_latents = None,
return_latent_slice = None,
overlap_noise = 0,
conditioning_latents_size = 0,
model_filename = None,
**bbargs
):
r"""
Generates video frames from text prompt using diffusion process.
Args:
input_prompt (`str`):
Text prompt for content generation
size (tupele[`int`], *optional*, defaults to (1280,720)):
Controls video resolution, (width,height).
frame_num (`int`, *optional*, defaults to 81):
How many frames to sample from a video. The number should be 4n+1
shift (`float`, *optional*, defaults to 5.0):
Noise schedule shift parameter. Affects temporal dynamics
sample_solver (`str`, *optional*, defaults to 'unipc'):
Solver used to sample the video.
sampling_steps (`int`, *optional*, defaults to 40):
Number of diffusion sampling steps. Higher values improve quality but slow generation
guide_scale (`float`, *optional*, defaults 5.0):
Classifier-free guidance scale. Controls prompt adherence vs. creativity
n_prompt (`str`, *optional*, defaults to ""):
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
seed (`int`, *optional*, defaults to -1):
Random seed for noise generation. If -1, use random seed.
offload_model (`bool`, *optional*, defaults to True):
If True, offloads models to CPU during generation to save VRAM
Returns:
torch.Tensor:
Generated video frames tensor. Dimensions: (C, N H, W) where:
- C: Color channels (3 for RGB)
- N: Number of frames (81)
- H: Frame height (from size)
- W: Frame width from size)
"""
# preprocess
vace = "Vace" in model_filename
if n_prompt == "":
n_prompt = self.sample_neg_prompt
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
seed_g = torch.Generator(device=self.device)
seed_g.manual_seed(seed)
if self._interrupt:
return None
context = self.text_encoder([input_prompt], self.device)[0]
context_null = self.text_encoder([n_prompt], self.device)[0]
context = context.to(self.dtype)
context_null = context_null.to(self.dtype)
input_ref_images_neg = None
phantom = False
if target_camera != None:
width = input_video.shape[2]
height = input_video.shape[1]
input_video = input_video.to(dtype=self.dtype , device=self.device)
input_video = input_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.)
source_latents = self.vae.encode([input_video])[0] #.to(dtype=self.dtype, device=self.device)
del input_video
# Process target camera (recammaster)
from wan.utils.cammmaster_tools import get_camera_embedding
cam_emb = get_camera_embedding(target_camera)
cam_emb = cam_emb.to(dtype=self.dtype, device=self.device)
if vace :
# vace context encode
input_frames = [u.to(self.device) for u in input_frames]
input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images]
input_masks = [u.to(self.device) for u in input_masks]
if self.background_mask != None: self.background_mask = [m.to(self.device) for m in self.background_mask]
previous_latents = None
# if overlapped_latents != None:
# input_ref_images = [u[-1:] for u in input_ref_images]
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size, overlapped_latents = overlapped_latents )
m0 = self.vace_encode_masks(input_masks, input_ref_images)
if self.background_mask != None:
zbg = self.vace_encode_frames([ref_img[0] for ref_img in input_ref_images], None, masks=self.background_mask, tile_size = VAE_tile_size )
mbg = self.vace_encode_masks(self.background_mask, None)
for zz0, mm0, zzbg, mmbg in zip(z0, m0, zbg, mbg):
zz0[:, 0:1] = zzbg
mm0[:, 0:1] = mmbg
self.background_mask = zz0 = mm0 = zzbg = mmbg = None
z = self.vace_latent(z0, m0)
target_shape = list(z0[0].shape)
target_shape[0] = int(target_shape[0] / 2)
else:
if input_ref_images != None: # Phantom Ref images
phantom = True
input_ref_images = self.get_vae_latents(input_ref_images, self.device)
input_ref_images_neg = torch.zeros_like(input_ref_images)
F = frame_num
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1 + (input_ref_images.shape[1] if input_ref_images != None else 0),
height // self.vae_stride[1],
width // self.vae_stride[2])
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
(self.patch_size[1] * self.patch_size[2]) *
target_shape[1])
if self._interrupt:
return None
noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ]
# evaluation mode
if False:
sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True)
timesteps = torch.tensor([1000, 934, 862, 756, 603, 410, 250, 140, 74, 0])[:sampling_steps].to(self.device)
sample_scheduler.timesteps =timesteps
elif sample_solver == 'unipc':
sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=self.num_train_timesteps, shift=1, use_dynamic_shifting=False)
sample_scheduler.set_timesteps( sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,
shift=1,
use_dynamic_shifting=False)
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
timesteps, _ = retrieve_timesteps(
sample_scheduler,
device=self.device,
sigmas=sampling_sigmas)
else:
raise NotImplementedError("Unsupported solver.")
# sample videos
latents = noise[0]
del noise
batch_size = 1
if target_camera != None:
shape = list(latents.shape[1:])
shape[0] *= 2
freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False)
else:
freqs = get_rotary_pos_embed(latents.shape[1:], enable_RIFLEx= enable_RIFLEx)
kwargs = {'freqs': freqs, 'pipeline': self, 'callback': callback}
if target_camera != None:
kwargs.update({'cam_emb': cam_emb})
if vace:
ref_images_count = len(input_ref_images[0]) if input_ref_images != None and input_ref_images[0] != None else 0
context_scale = context_scale if context_scale != None else [1.0] * len(z)
kwargs.update({'vace_context' : z, 'vace_context_scale' : context_scale})
if overlapped_latents != None :
overlapped_latents_size = overlapped_latents.shape[1] + 1
# overlapped_latents_size = 3
z_reactive = [ zz[0:16, 0:overlapped_latents_size + ref_images_count].clone() for zz in z]
if self.model.enable_cache:
x_count = 3 if phantom else 2
self.model.previous_residual = [None] * x_count
self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.teacache_multiplier)
if callback != None:
callback(-1, None, True)
offload.shared_state["_chipmunk"] = False
chipmunk = offload.shared_state.get("_chipmunk", False)
if chipmunk:
self.model.setup_chipmunk()
for i, t in enumerate(tqdm(timesteps)):
timestep = [t]
if overlapped_latents != None :
overlap_noise_factor = overlap_noise / 1000
latent_noise_factor = t / 1000
for zz, zz_r, ll in zip(z, z_reactive, [latents, None]): # extra None for second control net
zz[0:16, ref_images_count:overlapped_latents_size + ref_images_count] = zz_r[:, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(zz_r[:, ref_images_count:] ) * overlap_noise_factor
if ll != None:
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r * (1.0 - latent_noise_factor) + torch.randn_like(zz_r ) * latent_noise_factor
if target_camera != None:
latent_model_input = torch.cat([latents, source_latents], dim=1)
else:
latent_model_input = latents
kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None
offload.set_step_no_for_lora(self.model, i)
timestep = torch.stack(timestep)
kwargs["current_step"] = i
kwargs["t"] = timestep
if guide_scale == 1:
noise_pred = self.model( [latent_model_input], x_id = 0, context = [context], **kwargs)[0]
if self._interrupt:
return None
elif joint_pass:
if phantom:
pos_it, pos_i, neg = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ] * 2 +
[ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1)],
context = [context, context_null, context_null], **kwargs)
else:
noise_pred_cond, noise_pred_uncond = self.model(
[latent_model_input, latent_model_input], context = [context, context_null], **kwargs)
if self._interrupt:
return None
else:
if phantom:
pos_it = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 0, context = [context], **kwargs
)[0]
if self._interrupt:
return None
pos_i = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images.shape[1]], input_ref_images], dim=1) ], x_id = 1, context = [context_null],**kwargs
)[0]
if self._interrupt:
return None
neg = self.model(
[ torch.cat([latent_model_input[:,:-input_ref_images_neg.shape[1]], input_ref_images_neg], dim=1) ], x_id = 2, context = [context_null], **kwargs
)[0]
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
[latent_model_input], x_id = 0, context = [context], **kwargs)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
[latent_model_input], x_id = 1, context = [context_null], **kwargs)[0]
if self._interrupt:
return None
# del latent_model_input
# CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/
if guide_scale == 1:
pass
elif phantom:
guide_scale_img= 5.0
guide_scale_text= guide_scale #7.5
noise_pred = neg + guide_scale_img * (pos_i - neg) + guide_scale_text * (pos_it - pos_i)
else:
noise_pred_text = noise_pred_cond
if cfg_star_switch:
positive_flat = noise_pred_text.view(batch_size, -1)
negative_flat = noise_pred_uncond.view(batch_size, -1)
alpha = optimized_scale(positive_flat,negative_flat)
alpha = alpha.view(batch_size, 1, 1, 1)
if (i <= cfg_zero_step):
noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred...
else:
noise_pred_uncond *= alpha
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond)
noise_pred_uncond, noise_pred_cond, noise_pred_text, pos_it, pos_i, neg = None, None, None, None, None, None
scheduler_kwargs = {} if isinstance(sample_scheduler, FlowMatchScheduler) else {"generator": seed_g}
temp_x0 = sample_scheduler.step(
noise_pred[:, :target_shape[1]].unsqueeze(0),
t,
latents.unsqueeze(0),
# return_dict=False,
**scheduler_kwargs)[0]
latents = temp_x0.squeeze(0)
del temp_x0
if callback is not None:
callback(i, latents, False)
x0 = [latents]
if chipmunk:
self.model.release_chipmunk() # need to add it at every exit when in prof
if return_latent_slice != None:
if overlapped_latents != None:
# latents [:, 1:] = self.toto
for zz, zz_r, ll in zip(z, z_reactive, [latents]):
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r
latent_slice = latents[:, return_latent_slice].clone()
if input_frames == None:
if phantom:
# phantom post processing
x0 = [x0_[:,:-input_ref_images.shape[1]] for x0_ in x0]
videos = self.vae.decode(x0, VAE_tile_size)
else:
# vace post processing
videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
if return_latent_slice != None:
return { "x" : videos[0], "latent_slice" : latent_slice }
return videos[0]
def adapt_vace_model(self):
model = self.model
modules_dict= { k: m for k, m in model.named_modules()}
for model_layer, vace_layer in model.vace_layers_mapping.items():
module = modules_dict[f"vace_blocks.{vace_layer}"]
target = modules_dict[f"blocks.{model_layer}"]
setattr(target, "vace", module )
delattr(model, "vace_blocks") |