|
|
|
import math
|
|
from einops import rearrange
|
|
import torch
|
|
import torch.cuda.amp as amp
|
|
import torch.nn as nn
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
import numpy as np
|
|
from typing import Union,Optional
|
|
from mmgp import offload
|
|
from .attention import pay_attention
|
|
from torch.backends.cuda import sdp_kernel
|
|
|
|
__all__ = ['WanModel']
|
|
|
|
|
|
def sinusoidal_embedding_1d(dim, position):
|
|
|
|
assert dim % 2 == 0
|
|
half = dim // 2
|
|
position = position.type(torch.float32)
|
|
|
|
|
|
sinusoid = torch.outer(
|
|
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
|
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
|
return x
|
|
|
|
|
|
def reshape_latent(latent, latent_frames):
|
|
if latent_frames == latent.shape[0]:
|
|
return latent
|
|
return latent.reshape(latent_frames, -1, latent.shape[-1] )
|
|
|
|
|
|
def identify_k( b: float, d: int, N: int):
|
|
"""
|
|
This function identifies the index of the intrinsic frequency component in a RoPE-based pre-trained diffusion transformer.
|
|
|
|
Args:
|
|
b (`float`): The base frequency for RoPE.
|
|
d (`int`): Dimension of the frequency tensor
|
|
N (`int`): the first observed repetition frame in latent space
|
|
Returns:
|
|
k (`int`): the index of intrinsic frequency component
|
|
N_k (`int`): the period of intrinsic frequency component in latent space
|
|
Example:
|
|
In HunyuanVideo, b=256 and d=16, the repetition occurs approximately 8s (N=48 in latent space).
|
|
k, N_k = identify_k(b=256, d=16, N=48)
|
|
In this case, the intrinsic frequency index k is 4, and the period N_k is 50.
|
|
"""
|
|
|
|
|
|
periods = []
|
|
for j in range(1, d // 2 + 1):
|
|
theta_j = 1.0 / (b ** (2 * (j - 1) / d))
|
|
N_j = round(2 * torch.pi / theta_j)
|
|
periods.append(N_j)
|
|
|
|
|
|
diffs = [abs(N_j - N) for N_j in periods]
|
|
k = diffs.index(min(diffs)) + 1
|
|
N_k = periods[k-1]
|
|
return k, N_k
|
|
|
|
def rope_params_riflex(max_seq_len, dim, theta=10000, L_test=30, k=6):
|
|
assert dim % 2 == 0
|
|
exponents = torch.arange(0, dim, 2, dtype=torch.float64).div(dim)
|
|
inv_theta_pow = 1.0 / torch.pow(theta, exponents)
|
|
|
|
inv_theta_pow[k-1] = 0.9 * 2 * torch.pi / L_test
|
|
|
|
freqs = torch.outer(torch.arange(max_seq_len), inv_theta_pow)
|
|
if True:
|
|
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float()
|
|
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float()
|
|
return (freqs_cos, freqs_sin)
|
|
else:
|
|
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
|
return freqs
|
|
|
|
|
|
|
|
def relative_l1_distance(last_tensor, current_tensor):
|
|
l1_distance = torch.abs(last_tensor - current_tensor).mean()
|
|
norm = torch.abs(last_tensor).mean()
|
|
relative_l1_distance = l1_distance / norm
|
|
return relative_l1_distance.to(torch.float32)
|
|
|
|
class WanRMSNorm(nn.Module):
|
|
|
|
def __init__(self, dim, eps=1e-5):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
"""
|
|
y = x.float()
|
|
y.pow_(2)
|
|
y = y.mean(dim=-1, keepdim=True)
|
|
y += self.eps
|
|
y.rsqrt_()
|
|
x *= y
|
|
x *= self.weight
|
|
return x
|
|
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
|
|
|
def my_LayerNorm(norm, x):
|
|
y = x.float()
|
|
y_m = y.mean(dim=-1, keepdim=True)
|
|
y -= y_m
|
|
del y_m
|
|
y.pow_(2)
|
|
y = y.mean(dim=-1, keepdim=True)
|
|
y += norm.eps
|
|
y.rsqrt_()
|
|
x = x * y
|
|
return x
|
|
|
|
|
|
class WanLayerNorm(nn.LayerNorm):
|
|
|
|
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
|
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
|
|
|
def forward(self, x):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
"""
|
|
|
|
|
|
|
|
y = super().forward(x)
|
|
x = y.type_as(x)
|
|
return x
|
|
|
|
|
|
from wan.modules.posemb_layers import apply_rotary_emb
|
|
|
|
class WanSelfAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
eps=1e-6,
|
|
block_no=0):
|
|
assert dim % num_heads == 0
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.window_size = window_size
|
|
self.qk_norm = qk_norm
|
|
self.eps = eps
|
|
self.block_no = block_no
|
|
|
|
|
|
self.q = nn.Linear(dim, dim)
|
|
self.k = nn.Linear(dim, dim)
|
|
self.v = nn.Linear(dim, dim)
|
|
self.o = nn.Linear(dim, dim)
|
|
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
|
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
|
|
|
|
|
def forward(self, xlist, grid_sizes, freqs, block_mask = None):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
x = xlist[0]
|
|
xlist.clear()
|
|
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
|
|
|
|
|
q = self.q(x)
|
|
self.norm_q(q)
|
|
q = q.view(b, s, n, d)
|
|
k = self.k(x)
|
|
self.norm_k(k)
|
|
k = k.view(b, s, n, d)
|
|
v = self.v(x).view(b, s, n, d)
|
|
del x
|
|
qklist = [q,k]
|
|
del q,k
|
|
|
|
q,k = apply_rotary_emb(qklist, freqs, head_first=False)
|
|
chipmunk = offload.shared_state.get("_chipmunk", False)
|
|
if chipmunk and self.__class__ == WanSelfAttention:
|
|
q = q.transpose(1,2)
|
|
k = k.transpose(1,2)
|
|
v = v.transpose(1,2)
|
|
attn_layers = offload.shared_state["_chipmunk_layers"]
|
|
x = attn_layers[self.block_no](q, k, v)
|
|
x = x.transpose(1,2)
|
|
elif block_mask == None:
|
|
qkv_list = [q,k,v]
|
|
del q,k,v
|
|
x = pay_attention(
|
|
qkv_list,
|
|
window_size=self.window_size)
|
|
else:
|
|
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
|
x = (
|
|
torch.nn.functional.scaled_dot_product_attention(
|
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask
|
|
)
|
|
.transpose(1, 2)
|
|
.contiguous()
|
|
)
|
|
del q,k,v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = x.flatten(2)
|
|
x = self.o(x)
|
|
return x
|
|
|
|
|
|
class WanT2VCrossAttention(WanSelfAttention):
|
|
|
|
def forward(self, xlist, context, grid_sizes, *args, **kwargs):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
context(Tensor): Shape [B, L2, C]
|
|
"""
|
|
x = xlist[0]
|
|
xlist.clear()
|
|
b, n, d = x.size(0), self.num_heads, self.head_dim
|
|
|
|
|
|
q = self.q(x)
|
|
del x
|
|
self.norm_q(q)
|
|
q= q.view(b, -1, n, d)
|
|
k = self.k(context)
|
|
self.norm_k(k)
|
|
k = k.view(b, -1, n, d)
|
|
v = self.v(context).view(b, -1, n, d)
|
|
|
|
|
|
v = v.contiguous().clone()
|
|
qvl_list=[q, k, v]
|
|
del q, k, v
|
|
x = pay_attention(qvl_list, cross_attn= True)
|
|
|
|
|
|
x = x.flatten(2)
|
|
x = self.o(x)
|
|
return x
|
|
|
|
|
|
class WanI2VCrossAttention(WanSelfAttention):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
eps=1e-6,
|
|
block_no=0):
|
|
super().__init__(dim, num_heads, window_size, qk_norm, eps, block_no)
|
|
|
|
self.k_img = nn.Linear(dim, dim)
|
|
self.v_img = nn.Linear(dim, dim)
|
|
|
|
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
|
|
|
|
def forward(self, xlist, context, grid_sizes, audio_proj, audio_scale, audio_context_lens ):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
context(Tensor): Shape [B, L2, C]
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
x = xlist[0]
|
|
xlist.clear()
|
|
|
|
context_img = context[:, :257]
|
|
context = context[:, 257:]
|
|
b, n, d = x.size(0), self.num_heads, self.head_dim
|
|
|
|
|
|
q = self.q(x)
|
|
del x
|
|
self.norm_q(q)
|
|
q= q.view(b, -1, n, d)
|
|
k = self.k(context)
|
|
self.norm_k(k)
|
|
k = k.view(b, -1, n, d)
|
|
v = self.v(context).view(b, -1, n, d)
|
|
|
|
qkv_list = [q, k, v]
|
|
del k,v
|
|
x = pay_attention(qkv_list)
|
|
|
|
if audio_scale != None:
|
|
audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens)
|
|
k_img = self.k_img(context_img)
|
|
self.norm_k_img(k_img)
|
|
k_img = k_img.view(b, -1, n, d)
|
|
v_img = self.v_img(context_img).view(b, -1, n, d)
|
|
qkv_list = [q, k_img, v_img]
|
|
del q, k_img, v_img
|
|
img_x = pay_attention(qkv_list)
|
|
|
|
|
|
|
|
|
|
x = x.flatten(2)
|
|
img_x = img_x.flatten(2)
|
|
x += img_x
|
|
del img_x
|
|
if audio_scale != None:
|
|
x.add_(audio_x, alpha= audio_scale)
|
|
x = self.o(x)
|
|
return x
|
|
|
|
|
|
|
|
WAN_CROSSATTENTION_CLASSES = {
|
|
't2v_cross_attn': WanT2VCrossAttention,
|
|
'i2v_cross_attn': WanI2VCrossAttention,
|
|
}
|
|
|
|
|
|
class WanAttentionBlock(nn.Module):
|
|
|
|
def __init__(self,
|
|
cross_attn_type,
|
|
dim,
|
|
ffn_dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=None,
|
|
block_no = 0
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.ffn_dim = ffn_dim
|
|
self.num_heads = num_heads
|
|
self.window_size = window_size
|
|
self.qk_norm = qk_norm
|
|
self.cross_attn_norm = cross_attn_norm
|
|
self.eps = eps
|
|
self.block_no = block_no
|
|
|
|
|
|
self.norm1 = WanLayerNorm(dim, eps)
|
|
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
|
eps, block_no= block_no)
|
|
self.norm3 = WanLayerNorm(
|
|
dim, eps,
|
|
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
|
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
|
num_heads,
|
|
(-1, -1),
|
|
qk_norm,
|
|
eps,
|
|
block_no)
|
|
self.norm2 = WanLayerNorm(dim, eps)
|
|
self.ffn = nn.Sequential(
|
|
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
|
nn.Linear(ffn_dim, dim))
|
|
|
|
|
|
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
|
|
self.block_id = block_id
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
e,
|
|
grid_sizes,
|
|
freqs,
|
|
context,
|
|
hints= None,
|
|
context_scale=[1.0],
|
|
cam_emb= None,
|
|
block_mask = None,
|
|
audio_proj= None,
|
|
audio_context_lens= None,
|
|
audio_scale=None,
|
|
):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
e(Tensor): Shape [B, 6, C]
|
|
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
hints_processed = None
|
|
attention_dtype = self.self_attn.q.weight.dtype
|
|
dtype = x.dtype
|
|
|
|
if self.block_id is not None and hints is not None:
|
|
kwargs = {
|
|
"grid_sizes" : grid_sizes,
|
|
"freqs" :freqs,
|
|
"context" : context,
|
|
"e" : e,
|
|
}
|
|
hints_processed= []
|
|
for scale, hint in zip(context_scale, hints):
|
|
if scale == 0:
|
|
hints_processed.append(None)
|
|
else:
|
|
hints_processed.append(self.vace(hint, x, **kwargs) if self.block_id == 0 else self.vace(hint, None, **kwargs))
|
|
|
|
latent_frames = e.shape[0]
|
|
e = (self.modulation + e).chunk(6, dim=1)
|
|
|
|
x_mod = self.norm1(x)
|
|
x_mod = reshape_latent(x_mod , latent_frames)
|
|
x_mod *= 1 + e[1]
|
|
x_mod += e[0]
|
|
x_mod = reshape_latent(x_mod , 1)
|
|
if cam_emb != None:
|
|
cam_emb = self.cam_encoder(cam_emb)
|
|
cam_emb = cam_emb.repeat(1, 2, 1)
|
|
cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, grid_sizes[1], grid_sizes[2], 1)
|
|
cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d')
|
|
x_mod += cam_emb
|
|
|
|
xlist = [x_mod.to(attention_dtype)]
|
|
del x_mod
|
|
y = self.self_attn( xlist, grid_sizes, freqs, block_mask)
|
|
y = y.to(dtype)
|
|
|
|
if cam_emb != None:
|
|
y = self.projector(y)
|
|
|
|
x, y = reshape_latent(x , latent_frames), reshape_latent(y , latent_frames)
|
|
x.addcmul_(y, e[2])
|
|
x, y = reshape_latent(x , 1), reshape_latent(y , 1)
|
|
del y
|
|
y = self.norm3(x)
|
|
y = y.to(attention_dtype)
|
|
ylist= [y]
|
|
del y
|
|
x += self.cross_attn(ylist, context, grid_sizes, audio_proj, audio_scale, audio_context_lens).to(dtype)
|
|
|
|
y = self.norm2(x)
|
|
|
|
y = reshape_latent(y , latent_frames)
|
|
y *= 1 + e[4]
|
|
y += e[3]
|
|
y = reshape_latent(y , 1)
|
|
y = y.to(attention_dtype)
|
|
|
|
ffn = self.ffn[0]
|
|
gelu = self.ffn[1]
|
|
ffn2= self.ffn[2]
|
|
|
|
y_shape = y.shape
|
|
y = y.view(-1, y_shape[-1])
|
|
chunk_size = int(y_shape[1]/2.7)
|
|
chunks =torch.split(y, chunk_size)
|
|
for y_chunk in chunks:
|
|
mlp_chunk = ffn(y_chunk)
|
|
mlp_chunk = gelu(mlp_chunk)
|
|
y_chunk[...] = ffn2(mlp_chunk)
|
|
del mlp_chunk
|
|
y = y.view(y_shape)
|
|
y = y.to(dtype)
|
|
x, y = reshape_latent(x , latent_frames), reshape_latent(y , latent_frames)
|
|
x.addcmul_(y, e[5])
|
|
x, y = reshape_latent(x , 1), reshape_latent(y , 1)
|
|
|
|
if hints_processed is not None:
|
|
for hint, scale in zip(hints_processed, context_scale):
|
|
if scale != 0:
|
|
if scale == 1:
|
|
x.add_(hint)
|
|
else:
|
|
x.add_(hint, alpha= scale)
|
|
return x
|
|
|
|
|
|
|
|
class VaceWanAttentionBlock(WanAttentionBlock):
|
|
def __init__(
|
|
self,
|
|
cross_attn_type,
|
|
dim,
|
|
ffn_dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=0
|
|
):
|
|
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
|
|
self.block_id = block_id
|
|
if block_id == 0:
|
|
self.before_proj = nn.Linear(self.dim, self.dim)
|
|
nn.init.zeros_(self.before_proj.weight)
|
|
nn.init.zeros_(self.before_proj.bias)
|
|
self.after_proj = nn.Linear(self.dim, self.dim)
|
|
nn.init.zeros_(self.after_proj.weight)
|
|
nn.init.zeros_(self.after_proj.bias)
|
|
|
|
def forward(self, hints, x, **kwargs):
|
|
|
|
c = hints[0]
|
|
hints[0] = None
|
|
if self.block_id == 0:
|
|
c = self.before_proj(c)
|
|
c += x
|
|
c = super().forward(c, **kwargs)
|
|
c_skip = self.after_proj(c)
|
|
hints[0] = c
|
|
return c_skip
|
|
|
|
|
|
class Head(nn.Module):
|
|
|
|
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.out_dim = out_dim
|
|
self.patch_size = patch_size
|
|
self.eps = eps
|
|
|
|
|
|
out_dim = math.prod(patch_size) * out_dim
|
|
self.norm = WanLayerNorm(dim, eps)
|
|
self.head = nn.Linear(dim, out_dim)
|
|
|
|
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
|
|
|
|
def forward(self, x, e):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
e(Tensor): Shape [B, C]
|
|
"""
|
|
|
|
dtype = x.dtype
|
|
|
|
latent_frames = e.shape[0]
|
|
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
|
x = self.norm(x).to(dtype)
|
|
x = reshape_latent(x , latent_frames)
|
|
x *= (1 + e[1])
|
|
x += e[0]
|
|
x = reshape_latent(x , 1)
|
|
x= x.to(self.head.weight.dtype)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
|
|
class MLPProj(torch.nn.Module):
|
|
|
|
def __init__(self, in_dim, out_dim):
|
|
super().__init__()
|
|
|
|
self.proj = torch.nn.Sequential(
|
|
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
|
|
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
|
|
torch.nn.LayerNorm(out_dim))
|
|
|
|
def forward(self, image_embeds):
|
|
clip_extra_context_tokens = self.proj(image_embeds)
|
|
return clip_extra_context_tokens
|
|
|
|
|
|
class WanModel(ModelMixin, ConfigMixin):
|
|
def setup_chipmunk(self):
|
|
|
|
|
|
seq_shape = (21, 45, 80)
|
|
chipmunk_layers =[]
|
|
for i in range(self.num_layers):
|
|
layer_num, layer_counter = LayerCounter.build_for_layer(is_attn_sparse=True, is_mlp_sparse=False)
|
|
chipmunk_layers.append( SparseDiffAttn(layer_num, layer_counter))
|
|
offload.shared_state["_chipmunk_layers"] = chipmunk_layers
|
|
|
|
chipmunk_layers[0].initialize_static_mask(
|
|
seq_shape=seq_shape,
|
|
txt_len=0,
|
|
local_heads_num=self.num_heads,
|
|
device='cuda'
|
|
)
|
|
chipmunk_layers[0].layer_counter.reset()
|
|
|
|
def release_chipmunk(self):
|
|
offload.shared_state["_chipmunk_layers"] = None
|
|
|
|
def preprocess_loras(self, model_type, sd):
|
|
|
|
first = next(iter(sd), None)
|
|
if first == None:
|
|
return sd
|
|
|
|
if first.startswith("lora_unet_"):
|
|
new_sd = {}
|
|
print("Converting Lora Safetensors format to Lora Diffusers format")
|
|
alphas = {}
|
|
repl_list = ["cross_attn", "self_attn", "ffn"]
|
|
src_list = ["_" + k + "_" for k in repl_list]
|
|
tgt_list = ["." + k + "." for k in repl_list]
|
|
|
|
for k,v in sd.items():
|
|
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
|
|
|
|
for s,t in zip(src_list, tgt_list):
|
|
k = k.replace(s,t)
|
|
|
|
k = k.replace("lora_up","lora_B")
|
|
k = k.replace("lora_down","lora_A")
|
|
|
|
if "alpha" in k:
|
|
alphas[k] = v
|
|
else:
|
|
new_sd[k] = v
|
|
|
|
new_alphas = {}
|
|
for k,v in new_sd.items():
|
|
if "lora_B" in k:
|
|
dim = v.shape[1]
|
|
elif "lora_A" in k:
|
|
dim = v.shape[0]
|
|
else:
|
|
continue
|
|
alpha_key = k[:-len("lora_X.weight")] +"alpha"
|
|
if alpha_key in alphas:
|
|
scale = alphas[alpha_key] / dim
|
|
new_alphas[alpha_key] = scale
|
|
else:
|
|
print(f"Lora alpha'{alpha_key}' is missing")
|
|
new_sd.update(new_alphas)
|
|
sd = new_sd
|
|
from wgp import test_class_i2v
|
|
if not test_class_i2v(model_type):
|
|
new_sd = {}
|
|
|
|
for k,v in sd.items():
|
|
if any(layer in k for layer in ["cross_attn.k_img", "cross_attn.v_img"]):
|
|
continue
|
|
new_sd[k] = v
|
|
sd = new_sd
|
|
|
|
return sd
|
|
r"""
|
|
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
|
"""
|
|
|
|
ignore_for_config = [
|
|
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
|
|
]
|
|
_no_split_modules = ['WanAttentionBlock']
|
|
|
|
@register_to_config
|
|
def __init__(self,
|
|
vace_layers=None,
|
|
vace_in_dim=None,
|
|
model_type='t2v',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
recammaster = False,
|
|
inject_sample_info = False,
|
|
fantasytalking_dim = 0,
|
|
):
|
|
r"""
|
|
Initialize the diffusion model backbone.
|
|
|
|
Args:
|
|
model_type (`str`, *optional*, defaults to 't2v'):
|
|
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
|
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
|
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
|
text_len (`int`, *optional*, defaults to 512):
|
|
Fixed length for text embeddings
|
|
in_dim (`int`, *optional*, defaults to 16):
|
|
Input video channels (C_in)
|
|
dim (`int`, *optional*, defaults to 2048):
|
|
Hidden dimension of the transformer
|
|
ffn_dim (`int`, *optional*, defaults to 8192):
|
|
Intermediate dimension in feed-forward network
|
|
freq_dim (`int`, *optional*, defaults to 256):
|
|
Dimension for sinusoidal time embeddings
|
|
text_dim (`int`, *optional*, defaults to 4096):
|
|
Input dimension for text embeddings
|
|
out_dim (`int`, *optional*, defaults to 16):
|
|
Output video channels (C_out)
|
|
num_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads
|
|
num_layers (`int`, *optional*, defaults to 32):
|
|
Number of transformer blocks
|
|
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
|
Window size for local attention (-1 indicates global attention)
|
|
qk_norm (`bool`, *optional*, defaults to True):
|
|
Enable query/key normalization
|
|
cross_attn_norm (`bool`, *optional*, defaults to False):
|
|
Enable cross-attention normalization
|
|
eps (`float`, *optional*, defaults to 1e-6):
|
|
Epsilon value for normalization layers
|
|
"""
|
|
|
|
super().__init__()
|
|
|
|
assert model_type in ['t2v', 'i2v']
|
|
self.model_type = model_type
|
|
|
|
self.patch_size = patch_size
|
|
self.text_len = text_len
|
|
self.in_dim = in_dim
|
|
self.dim = dim
|
|
self.ffn_dim = ffn_dim
|
|
self.freq_dim = freq_dim
|
|
self.text_dim = text_dim
|
|
self.out_dim = out_dim
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.window_size = window_size
|
|
self.qk_norm = qk_norm
|
|
self.cross_attn_norm = cross_attn_norm
|
|
self.eps = eps
|
|
self.num_frame_per_block = 1
|
|
self.flag_causal_attention = False
|
|
self.block_mask = None
|
|
self.inject_sample_info = inject_sample_info
|
|
|
|
|
|
self.patch_embedding = nn.Conv3d(
|
|
in_dim, dim, kernel_size=patch_size, stride=patch_size)
|
|
self.text_embedding = nn.Sequential(
|
|
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
|
|
nn.Linear(dim, dim))
|
|
|
|
if inject_sample_info:
|
|
self.fps_embedding = nn.Embedding(2, dim)
|
|
self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6))
|
|
|
|
self.time_embedding = nn.Sequential(
|
|
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
|
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
|
|
|
|
|
|
if vace_layers == None:
|
|
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
|
self.blocks = nn.ModuleList([
|
|
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
|
window_size, qk_norm, cross_attn_norm, eps, block_no =i)
|
|
for i in range(num_layers)
|
|
])
|
|
|
|
|
|
self.head = Head(dim, out_dim, patch_size, eps)
|
|
|
|
|
|
|
|
if model_type == 'i2v':
|
|
self.img_emb = MLPProj(1280, dim)
|
|
|
|
|
|
self.init_weights()
|
|
|
|
if vace_layers != None:
|
|
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
|
|
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
|
|
|
|
assert 0 in self.vace_layers
|
|
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
|
|
|
|
|
|
self.blocks = nn.ModuleList([
|
|
WanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
|
|
self.cross_attn_norm, self.eps, block_no =i,
|
|
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
|
|
for i in range(self.num_layers)
|
|
])
|
|
|
|
|
|
self.vace_blocks = nn.ModuleList([
|
|
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
|
|
self.cross_attn_norm, self.eps, block_id=i)
|
|
for i in self.vace_layers
|
|
])
|
|
|
|
|
|
self.vace_patch_embedding = nn.Conv3d(
|
|
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
|
|
)
|
|
if recammaster :
|
|
dim=self.blocks[0].self_attn.q.weight.shape[0]
|
|
for block in self.blocks:
|
|
block.cam_encoder = nn.Linear(12, dim)
|
|
block.projector = nn.Linear(dim, dim)
|
|
block.cam_encoder.weight.data.zero_()
|
|
block.cam_encoder.bias.data.zero_()
|
|
block.projector.weight = nn.Parameter(torch.eye(dim))
|
|
block.projector.bias = nn.Parameter(torch.zeros(dim))
|
|
|
|
if fantasytalking_dim > 0:
|
|
from fantasytalking.model import WanCrossAttentionProcessor
|
|
for block in self.blocks:
|
|
block.cross_attn.processor = WanCrossAttentionProcessor(fantasytalking_dim, dim)
|
|
|
|
|
|
def lock_layers_dtypes(self, hybrid_dtype = None, dtype = torch.float32):
|
|
layer_list = [self.head, self.head.head, self.patch_embedding]
|
|
target_dype= dtype
|
|
|
|
layer_list2 = [ self.time_embedding, self.time_embedding[0], self.time_embedding[2],
|
|
self.time_projection, self.time_projection[1]]
|
|
|
|
for block in self.blocks:
|
|
layer_list2 += [block.norm3]
|
|
|
|
if hasattr(self, "fps_embedding"):
|
|
layer_list2 += [self.fps_embedding, self.fps_projection, self.fps_projection[0], self.fps_projection[2]]
|
|
|
|
if hasattr(self, "vace_patch_embedding"):
|
|
layer_list2 += [self.vace_patch_embedding]
|
|
layer_list2 += [self.vace_blocks[0].before_proj]
|
|
for block in self.vace_blocks:
|
|
layer_list2 += [block.after_proj, block.norm3]
|
|
|
|
target_dype2 = hybrid_dtype if hybrid_dtype != None else dtype
|
|
|
|
|
|
if hasattr(self.blocks[0], "projector"):
|
|
for block in self.blocks:
|
|
layer_list2 += [block.projector]
|
|
|
|
for current_layer_list, current_dtype in zip([layer_list, layer_list2], [target_dype, target_dype2]):
|
|
for layer in current_layer_list:
|
|
layer._lock_dtype = dtype
|
|
|
|
if hasattr(layer, "weight") and layer.weight.dtype != current_dtype :
|
|
layer.weight.data = layer.weight.data.to(current_dtype)
|
|
if hasattr(layer, "bias"):
|
|
layer.bias.data = layer.bias.data.to(current_dtype)
|
|
|
|
self._lock_dtype = dtype
|
|
|
|
|
|
def compute_teacache_threshold(self, start_step, timesteps = None, speed_factor =0):
|
|
modulation_dtype = self.time_projection[1].weight.dtype
|
|
rescale_func = np.poly1d(self.coefficients)
|
|
e_list = []
|
|
for t in timesteps:
|
|
t = torch.stack([t])
|
|
time_emb = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(modulation_dtype) )
|
|
e_list.append(time_emb)
|
|
best_deltas = None
|
|
best_threshold = 0.01
|
|
best_diff = 1000
|
|
best_signed_diff = 1000
|
|
target_nb_steps= int(len(timesteps) / speed_factor)
|
|
threshold = 0.01
|
|
while threshold <= 0.6:
|
|
accumulated_rel_l1_distance =0
|
|
nb_steps = 0
|
|
diff = 1000
|
|
deltas = []
|
|
for i, t in enumerate(timesteps):
|
|
skip = False
|
|
if not (i<=start_step or i== len(timesteps)-1):
|
|
delta = abs(rescale_func(((e_list[i]-e_list[i-1]).abs().mean() / e_list[i-1].abs().mean()).cpu().item()))
|
|
|
|
accumulated_rel_l1_distance += delta
|
|
if accumulated_rel_l1_distance < threshold:
|
|
skip = True
|
|
|
|
else:
|
|
accumulated_rel_l1_distance = 0
|
|
if not skip:
|
|
nb_steps += 1
|
|
signed_diff = target_nb_steps - nb_steps
|
|
diff = abs(signed_diff)
|
|
if diff < best_diff:
|
|
best_threshold = threshold
|
|
best_deltas = deltas
|
|
best_diff = diff
|
|
best_signed_diff = signed_diff
|
|
elif diff > best_diff:
|
|
break
|
|
threshold += 0.01
|
|
self.rel_l1_thresh = best_threshold
|
|
print(f"Tea Cache, best threshold found:{best_threshold:0.2f} with gain x{len(timesteps)/(target_nb_steps - best_signed_diff):0.2f} for a target of x{speed_factor}")
|
|
|
|
return best_threshold
|
|
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
t,
|
|
context,
|
|
vace_context = None,
|
|
vace_context_scale=[1.0],
|
|
clip_fea=None,
|
|
y=None,
|
|
freqs = None,
|
|
pipeline = None,
|
|
current_step = 0,
|
|
x_id= 0,
|
|
max_steps = 0,
|
|
slg_layers=None,
|
|
callback = None,
|
|
cam_emb: torch.Tensor = None,
|
|
fps = None,
|
|
causal_block_size = 1,
|
|
causal_attention = False,
|
|
audio_proj=None,
|
|
audio_context_lens=None,
|
|
audio_scale=None,
|
|
|
|
):
|
|
|
|
modulation_dtype = self.time_projection[1].weight.dtype
|
|
|
|
if self.model_type == 'i2v':
|
|
assert clip_fea is not None and y is not None
|
|
|
|
device = self.patch_embedding.weight.device
|
|
if torch.is_tensor(freqs) and freqs.device != device:
|
|
freqs = freqs.to(device)
|
|
|
|
chipmunk = offload.shared_state.get("_chipmunk", False)
|
|
if chipmunk:
|
|
|
|
voxel_shape = (4, 6, 8)
|
|
|
|
x_list = x
|
|
joint_pass = len(x_list) > 1
|
|
is_source_x = [ x.data_ptr() == x_list[0].data_ptr() and i > 0 for i, x in enumerate(x_list) ]
|
|
last_x_idx = 0
|
|
for i, (is_source, x) in enumerate(zip(is_source_x, x_list)):
|
|
if is_source:
|
|
x_list[i] = x_list[0].clone()
|
|
last_x_idx = i
|
|
else:
|
|
|
|
if y is not None:
|
|
x = torch.cat([x, y], dim=0)
|
|
|
|
x = self.patch_embedding(x.unsqueeze(0)).to(modulation_dtype)
|
|
grid_sizes = x.shape[2:]
|
|
if chipmunk:
|
|
x = x.unsqueeze(-1)
|
|
x_og_shape = x.shape
|
|
x = voxel_chunk_no_padding(x, voxel_shape).squeeze(-1).transpose(1, 2)
|
|
else:
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x_list[i] = x
|
|
x, y = None, None
|
|
|
|
|
|
block_mask = None
|
|
if causal_attention and causal_block_size > 0 and False:
|
|
frame_num = grid_sizes[0]
|
|
height = grid_sizes[1]
|
|
width = grid_sizes[2]
|
|
block_num = frame_num // causal_block_size
|
|
range_tensor = torch.arange(block_num).view(-1, 1)
|
|
range_tensor = range_tensor.repeat(1, causal_block_size).flatten()
|
|
causal_mask = range_tensor.unsqueeze(0) <= range_tensor.unsqueeze(1)
|
|
causal_mask = causal_mask.view(frame_num, 1, 1, frame_num, 1, 1).to(x[0].device)
|
|
causal_mask = causal_mask.repeat(1, height, width, 1, height, width)
|
|
causal_mask = causal_mask.reshape(frame_num * height * width, frame_num * height * width)
|
|
block_mask = causal_mask.unsqueeze(0).unsqueeze(0)
|
|
del causal_mask
|
|
|
|
offload.shared_state["embed_sizes"] = grid_sizes
|
|
offload.shared_state["step_no"] = current_step
|
|
offload.shared_state["max_steps"] = max_steps
|
|
|
|
_flag_df = t.dim() == 2
|
|
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(modulation_dtype)
|
|
)
|
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim)).to(e.dtype)
|
|
|
|
if self.inject_sample_info:
|
|
fps = torch.tensor(fps, dtype=torch.long, device=device)
|
|
|
|
fps_emb = self.fps_embedding(fps).to(e.dtype)
|
|
if _flag_df:
|
|
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1)
|
|
else:
|
|
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))
|
|
|
|
|
|
context = [self.text_embedding( torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))] ).unsqueeze(0) ) for u in context ]
|
|
|
|
if clip_fea is not None:
|
|
context_clip = self.img_emb(clip_fea)
|
|
context = [ torch.cat( [context_clip, u ], dim=1 ) for u in context ]
|
|
|
|
context_list = context
|
|
if audio_scale != None:
|
|
audio_scale_list = audio_scale
|
|
else:
|
|
audio_scale_list = [None] * len(x_list)
|
|
|
|
|
|
|
|
kwargs = dict(
|
|
grid_sizes=grid_sizes,
|
|
freqs=freqs,
|
|
cam_emb = cam_emb,
|
|
block_mask = block_mask,
|
|
audio_proj=audio_proj,
|
|
audio_context_lens=audio_context_lens,
|
|
)
|
|
|
|
if vace_context == None:
|
|
hints_list = [None ] *len(x_list)
|
|
else:
|
|
|
|
c = [self.vace_patch_embedding(u.to(self.vace_patch_embedding.weight.dtype).unsqueeze(0)) for u in vace_context]
|
|
c = [u.flatten(2).transpose(1, 2) for u in c]
|
|
kwargs['context_scale'] = vace_context_scale
|
|
hints_list = [ [ [sub_c] for sub_c in c] for _ in range(len(x_list)) ]
|
|
del c
|
|
|
|
should_calc = True
|
|
if self.enable_cache:
|
|
if x_id != 0:
|
|
should_calc = self.should_calc
|
|
else:
|
|
if current_step <= self.cache_start_step or current_step == self.num_steps-1:
|
|
should_calc = True
|
|
self.accumulated_rel_l1_distance = 0
|
|
else:
|
|
rescale_func = np.poly1d(self.coefficients)
|
|
delta = abs(rescale_func(((e-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()))
|
|
self.accumulated_rel_l1_distance += delta
|
|
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
|
|
should_calc = False
|
|
self.teacache_skipped_steps += 1
|
|
|
|
else:
|
|
should_calc = True
|
|
self.accumulated_rel_l1_distance = 0
|
|
self.previous_modulated_input = e
|
|
self.should_calc = should_calc
|
|
|
|
if not should_calc:
|
|
if joint_pass:
|
|
for i, x in enumerate(x_list):
|
|
x += self.previous_residual[i]
|
|
else:
|
|
x = x_list[0]
|
|
x += self.previous_residual[x_id]
|
|
x = None
|
|
else:
|
|
if self.enable_cache:
|
|
if joint_pass:
|
|
self.previous_residual = [ None ] * len(self.previous_residual)
|
|
else:
|
|
self.previous_residual[x_id] = None
|
|
ori_hidden_states = [ None ] * len(x_list)
|
|
ori_hidden_states[0] = x_list[0].clone()
|
|
for i in range(1, len(x_list)):
|
|
ori_hidden_states[i] = ori_hidden_states[0] if is_source_x[i] else x_list[i].clone()
|
|
|
|
for block_idx, block in enumerate(self.blocks):
|
|
offload.shared_state["layer"] = block_idx
|
|
if callback != None:
|
|
callback(-1, None, False, True)
|
|
if pipeline._interrupt:
|
|
return [None] * len(x_list)
|
|
|
|
if (x_id != 0 or joint_pass) and slg_layers is not None and block_idx in slg_layers:
|
|
if not joint_pass:
|
|
continue
|
|
x_list[0] = block(x_list[0], context = context_list[0], e= e0, **kwargs)
|
|
else:
|
|
for i, (x, context, hints, audio_scale) in enumerate(zip(x_list, context_list, hints_list, audio_scale_list)):
|
|
x_list[i] = block(x, context = context, hints= hints, audio_scale= audio_scale, e= e0, **kwargs)
|
|
del x
|
|
del context, hints
|
|
|
|
if self.enable_cache:
|
|
if joint_pass:
|
|
for i, (x, ori, is_source) in enumerate(zip(x_list, ori_hidden_states, is_source_x)) :
|
|
if i == 0 or is_source and i != last_x_idx :
|
|
self.previous_residual[i] = torch.sub(x, ori)
|
|
else:
|
|
self.previous_residual[i] = ori
|
|
torch.sub(x, ori, out=self.previous_residual[i])
|
|
ori_hidden_states[i] = None
|
|
x , ori = None, None
|
|
else:
|
|
residual = ori_hidden_states[0]
|
|
torch.sub(x_list[0], ori_hidden_states[0], out=residual)
|
|
self.previous_residual[x_id] = residual
|
|
residual, ori_hidden_states = None, None
|
|
|
|
for i, x in enumerate(x_list):
|
|
if chipmunk:
|
|
x = reverse_voxel_chunk_no_padding(x.transpose(1, 2).unsqueeze(-1), x_og_shape, voxel_shape).squeeze(-1)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
|
|
x = self.head(x, e)
|
|
|
|
|
|
x_list[i] = self.unpatchify(x, grid_sizes)
|
|
del x
|
|
|
|
return [x[0].float() for x in x_list]
|
|
|
|
def unpatchify(self, x, grid_sizes):
|
|
r"""
|
|
Reconstruct video tensors from patch embeddings.
|
|
|
|
Args:
|
|
x (List[Tensor]):
|
|
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
|
grid_sizes (Tensor):
|
|
Original spatial-temporal grid dimensions before patching,
|
|
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
|
|
|
Returns:
|
|
List[Tensor]:
|
|
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
|
|
"""
|
|
|
|
c = self.out_dim
|
|
out = []
|
|
for u in x:
|
|
u = u[:math.prod(grid_sizes)].view(*grid_sizes, *self.patch_size, c)
|
|
u = torch.einsum('fhwpqrc->cfphqwr', u)
|
|
u = u.reshape(c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
|
|
out.append(u)
|
|
return out
|
|
|
|
def init_weights(self):
|
|
r"""
|
|
Initialize model parameters using Xavier initialization.
|
|
"""
|
|
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Linear):
|
|
nn.init.xavier_uniform_(m.weight)
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
|
|
|
|
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
|
|
for m in self.text_embedding.modules():
|
|
if isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, std=.02)
|
|
for m in self.time_embedding.modules():
|
|
if isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, std=.02)
|
|
|
|
|
|
nn.init.zeros_(self.head.head.weight)
|
|
|