File size: 45,508 Bytes
78360e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
from einops import rearrange
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
import numpy as np
from typing import Union,Optional
from mmgp import offload
from .attention import pay_attention
from torch.backends.cuda import sdp_kernel
__all__ = ['WanModel']
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float32)
# calculation
sinusoid = torch.outer(
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
def reshape_latent(latent, latent_frames):
if latent_frames == latent.shape[0]:
return latent
return latent.reshape(latent_frames, -1, latent.shape[-1] )
def identify_k( b: float, d: int, N: int):
"""
This function identifies the index of the intrinsic frequency component in a RoPE-based pre-trained diffusion transformer.
Args:
b (`float`): The base frequency for RoPE.
d (`int`): Dimension of the frequency tensor
N (`int`): the first observed repetition frame in latent space
Returns:
k (`int`): the index of intrinsic frequency component
N_k (`int`): the period of intrinsic frequency component in latent space
Example:
In HunyuanVideo, b=256 and d=16, the repetition occurs approximately 8s (N=48 in latent space).
k, N_k = identify_k(b=256, d=16, N=48)
In this case, the intrinsic frequency index k is 4, and the period N_k is 50.
"""
# Compute the period of each frequency in RoPE according to Eq.(4)
periods = []
for j in range(1, d // 2 + 1):
theta_j = 1.0 / (b ** (2 * (j - 1) / d))
N_j = round(2 * torch.pi / theta_j)
periods.append(N_j)
# Identify the intrinsic frequency whose period is closed to N(see Eq.(7))
diffs = [abs(N_j - N) for N_j in periods]
k = diffs.index(min(diffs)) + 1
N_k = periods[k-1]
return k, N_k
def rope_params_riflex(max_seq_len, dim, theta=10000, L_test=30, k=6):
assert dim % 2 == 0
exponents = torch.arange(0, dim, 2, dtype=torch.float64).div(dim)
inv_theta_pow = 1.0 / torch.pow(theta, exponents)
inv_theta_pow[k-1] = 0.9 * 2 * torch.pi / L_test
freqs = torch.outer(torch.arange(max_seq_len), inv_theta_pow)
if True:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return (freqs_cos, freqs_sin)
else:
freqs = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs
def relative_l1_distance(last_tensor, current_tensor):
l1_distance = torch.abs(last_tensor - current_tensor).mean()
norm = torch.abs(last_tensor).mean()
relative_l1_distance = l1_distance / norm
return relative_l1_distance.to(torch.float32)
class WanRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
y = x.float()
y.pow_(2)
y = y.mean(dim=-1, keepdim=True)
y += self.eps
y.rsqrt_()
x *= y
x *= self.weight
return x
# return self._norm(x).type_as(x) * self.weight
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
def my_LayerNorm(norm, x):
y = x.float()
y_m = y.mean(dim=-1, keepdim=True)
y -= y_m
del y_m
y.pow_(2)
y = y.mean(dim=-1, keepdim=True)
y += norm.eps
y.rsqrt_()
x = x * y
return x
class WanLayerNorm(nn.LayerNorm):
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
# return F.layer_norm(
# input, self.normalized_shape, self.weight, self.bias, self.eps
# )
y = super().forward(x)
x = y.type_as(x)
return x
# return super().forward(x).type_as(x)
from wan.modules.posemb_layers import apply_rotary_emb
class WanSelfAttention(nn.Module):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6,
block_no=0):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
self.block_no = block_no
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, xlist, grid_sizes, freqs, block_mask = None):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
x = xlist[0]
xlist.clear()
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
q = self.q(x)
self.norm_q(q)
q = q.view(b, s, n, d) # !!!
k = self.k(x)
self.norm_k(k)
k = k.view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
del x
qklist = [q,k]
del q,k
q,k = apply_rotary_emb(qklist, freqs, head_first=False)
chipmunk = offload.shared_state.get("_chipmunk", False)
if chipmunk and self.__class__ == WanSelfAttention:
q = q.transpose(1,2)
k = k.transpose(1,2)
v = v.transpose(1,2)
attn_layers = offload.shared_state["_chipmunk_layers"]
x = attn_layers[self.block_no](q, k, v)
x = x.transpose(1,2)
elif block_mask == None:
qkv_list = [q,k,v]
del q,k,v
x = pay_attention(
qkv_list,
window_size=self.window_size)
else:
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
x = (
torch.nn.functional.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask
)
.transpose(1, 2)
.contiguous()
)
del q,k,v
# if not self._flag_ar_attention:
# q = rope_apply(q, grid_sizes, freqs)
# k = rope_apply(k, grid_sizes, freqs)
# x = flash_attention(q=q, k=k, v=v, window_size=self.window_size)
# else:
# q = rope_apply(q, grid_sizes, freqs)
# k = rope_apply(k, grid_sizes, freqs)
# q = q.to(torch.bfloat16)
# k = k.to(torch.bfloat16)
# v = v.to(torch.bfloat16)
# with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
# x = (
# torch.nn.functional.scaled_dot_product_attention(
# q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask
# )
# .transpose(1, 2)
# .contiguous()
# )
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, xlist, context, grid_sizes, *args, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
x = xlist[0]
xlist.clear()
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x)
del x
self.norm_q(q)
q= q.view(b, -1, n, d)
k = self.k(context)
self.norm_k(k)
k = k.view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
# compute attention
v = v.contiguous().clone()
qvl_list=[q, k, v]
del q, k, v
x = pay_attention(qvl_list, cross_attn= True)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self,
dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
eps=1e-6,
block_no=0):
super().__init__(dim, num_heads, window_size, qk_norm, eps, block_no)
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, xlist, context, grid_sizes, audio_proj, audio_scale, audio_context_lens ):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits:
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
x = xlist[0]
xlist.clear()
context_img = context[:, :257]
context = context[:, 257:]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x)
del x
self.norm_q(q)
q= q.view(b, -1, n, d)
k = self.k(context)
self.norm_k(k)
k = k.view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
qkv_list = [q, k, v]
del k,v
x = pay_attention(qkv_list)
if audio_scale != None:
audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens)
k_img = self.k_img(context_img)
self.norm_k_img(k_img)
k_img = k_img.view(b, -1, n, d)
v_img = self.v_img(context_img).view(b, -1, n, d)
qkv_list = [q, k_img, v_img]
del q, k_img, v_img
img_x = pay_attention(qkv_list)
# compute attention
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
x += img_x
del img_x
if audio_scale != None:
x.add_(audio_x, alpha= audio_scale)
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
't2v_cross_attn': WanT2VCrossAttention,
'i2v_cross_attn': WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
def __init__(self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=None,
block_no = 0
):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
self.block_no = block_no
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
eps, block_no= block_no)
self.norm3 = WanLayerNorm(
dim, eps,
elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
num_heads,
(-1, -1),
qk_norm,
eps,
block_no)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
self.block_id = block_id
def forward(
self,
x,
e,
grid_sizes,
freqs,
context,
hints= None,
context_scale=[1.0],
cam_emb= None,
block_mask = None,
audio_proj= None,
audio_context_lens= None,
audio_scale=None,
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
hints_processed = None
attention_dtype = self.self_attn.q.weight.dtype
dtype = x.dtype
if self.block_id is not None and hints is not None:
kwargs = {
"grid_sizes" : grid_sizes,
"freqs" :freqs,
"context" : context,
"e" : e,
}
hints_processed= []
for scale, hint in zip(context_scale, hints):
if scale == 0:
hints_processed.append(None)
else:
hints_processed.append(self.vace(hint, x, **kwargs) if self.block_id == 0 else self.vace(hint, None, **kwargs))
latent_frames = e.shape[0]
e = (self.modulation + e).chunk(6, dim=1)
# self-attention
x_mod = self.norm1(x)
x_mod = reshape_latent(x_mod , latent_frames)
x_mod *= 1 + e[1]
x_mod += e[0]
x_mod = reshape_latent(x_mod , 1)
if cam_emb != None:
cam_emb = self.cam_encoder(cam_emb)
cam_emb = cam_emb.repeat(1, 2, 1)
cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, grid_sizes[1], grid_sizes[2], 1)
cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d')
x_mod += cam_emb
xlist = [x_mod.to(attention_dtype)]
del x_mod
y = self.self_attn( xlist, grid_sizes, freqs, block_mask)
y = y.to(dtype)
if cam_emb != None:
y = self.projector(y)
x, y = reshape_latent(x , latent_frames), reshape_latent(y , latent_frames)
x.addcmul_(y, e[2])
x, y = reshape_latent(x , 1), reshape_latent(y , 1)
del y
y = self.norm3(x)
y = y.to(attention_dtype)
ylist= [y]
del y
x += self.cross_attn(ylist, context, grid_sizes, audio_proj, audio_scale, audio_context_lens).to(dtype)
y = self.norm2(x)
y = reshape_latent(y , latent_frames)
y *= 1 + e[4]
y += e[3]
y = reshape_latent(y , 1)
y = y.to(attention_dtype)
ffn = self.ffn[0]
gelu = self.ffn[1]
ffn2= self.ffn[2]
y_shape = y.shape
y = y.view(-1, y_shape[-1])
chunk_size = int(y_shape[1]/2.7)
chunks =torch.split(y, chunk_size)
for y_chunk in chunks:
mlp_chunk = ffn(y_chunk)
mlp_chunk = gelu(mlp_chunk)
y_chunk[...] = ffn2(mlp_chunk)
del mlp_chunk
y = y.view(y_shape)
y = y.to(dtype)
x, y = reshape_latent(x , latent_frames), reshape_latent(y , latent_frames)
x.addcmul_(y, e[5])
x, y = reshape_latent(x , 1), reshape_latent(y , 1)
if hints_processed is not None:
for hint, scale in zip(hints_processed, context_scale):
if scale != 0:
if scale == 1:
x.add_(hint)
else:
x.add_(hint, alpha= scale)
return x
class VaceWanAttentionBlock(WanAttentionBlock):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=0
):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
self.block_id = block_id
if block_id == 0:
self.before_proj = nn.Linear(self.dim, self.dim)
nn.init.zeros_(self.before_proj.weight)
nn.init.zeros_(self.before_proj.bias)
self.after_proj = nn.Linear(self.dim, self.dim)
nn.init.zeros_(self.after_proj.weight)
nn.init.zeros_(self.after_proj.bias)
def forward(self, hints, x, **kwargs):
# behold dbm magic !
c = hints[0]
hints[0] = None
if self.block_id == 0:
c = self.before_proj(c)
c += x
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
hints[0] = c
return c_skip
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
# assert e.dtype == torch.float32
dtype = x.dtype
latent_frames = e.shape[0]
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
x = self.norm(x).to(dtype)
x = reshape_latent(x , latent_frames)
x *= (1 + e[1])
x += e[0]
x = reshape_latent(x , 1)
x= x.to(self.head.weight.dtype)
x = self.head(x)
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
torch.nn.LayerNorm(out_dim))
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanModel(ModelMixin, ConfigMixin):
def setup_chipmunk(self):
# from chipmunk.util import LayerCounter
# from chipmunk.modules import SparseDiffMlp, SparseDiffAttn
seq_shape = (21, 45, 80)
chipmunk_layers =[]
for i in range(self.num_layers):
layer_num, layer_counter = LayerCounter.build_for_layer(is_attn_sparse=True, is_mlp_sparse=False)
chipmunk_layers.append( SparseDiffAttn(layer_num, layer_counter))
offload.shared_state["_chipmunk_layers"] = chipmunk_layers
chipmunk_layers[0].initialize_static_mask(
seq_shape=seq_shape,
txt_len=0,
local_heads_num=self.num_heads,
device='cuda'
)
chipmunk_layers[0].layer_counter.reset()
def release_chipmunk(self):
offload.shared_state["_chipmunk_layers"] = None
def preprocess_loras(self, model_type, sd):
first = next(iter(sd), None)
if first == None:
return sd
if first.startswith("lora_unet_"):
new_sd = {}
print("Converting Lora Safetensors format to Lora Diffusers format")
alphas = {}
repl_list = ["cross_attn", "self_attn", "ffn"]
src_list = ["_" + k + "_" for k in repl_list]
tgt_list = ["." + k + "." for k in repl_list]
for k,v in sd.items():
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
for s,t in zip(src_list, tgt_list):
k = k.replace(s,t)
k = k.replace("lora_up","lora_B")
k = k.replace("lora_down","lora_A")
if "alpha" in k:
alphas[k] = v
else:
new_sd[k] = v
new_alphas = {}
for k,v in new_sd.items():
if "lora_B" in k:
dim = v.shape[1]
elif "lora_A" in k:
dim = v.shape[0]
else:
continue
alpha_key = k[:-len("lora_X.weight")] +"alpha"
if alpha_key in alphas:
scale = alphas[alpha_key] / dim
new_alphas[alpha_key] = scale
else:
print(f"Lora alpha'{alpha_key}' is missing")
new_sd.update(new_alphas)
sd = new_sd
from wgp import test_class_i2v
if not test_class_i2v(model_type):
new_sd = {}
# convert loras for i2v to t2v
for k,v in sd.items():
if any(layer in k for layer in ["cross_attn.k_img", "cross_attn.v_img"]):
continue
new_sd[k] = v
sd = new_sd
return sd
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
ignore_for_config = [
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
]
_no_split_modules = ['WanAttentionBlock']
@register_to_config
def __init__(self,
vace_layers=None,
vace_in_dim=None,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
recammaster = False,
inject_sample_info = False,
fantasytalking_dim = 0,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ['t2v', 'i2v']
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
self.num_frame_per_block = 1
self.flag_causal_attention = False
self.block_mask = None
self.inject_sample_info = inject_sample_info
# embeddings
self.patch_embedding = nn.Conv3d(
in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
nn.Linear(dim, dim))
if inject_sample_info:
self.fps_embedding = nn.Embedding(2, dim)
self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6))
self.time_embedding = nn.Sequential(
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
if vace_layers == None:
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
self.blocks = nn.ModuleList([
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, block_no =i)
for i in range(num_layers)
])
# head
self.head = Head(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim)
# initialize weights
self.init_weights()
if vace_layers != None:
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
assert 0 in self.vace_layers
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
# blocks
self.blocks = nn.ModuleList([
WanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
self.cross_attn_norm, self.eps, block_no =i,
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
for i in range(self.num_layers)
])
# vace blocks
self.vace_blocks = nn.ModuleList([
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
self.cross_attn_norm, self.eps, block_id=i)
for i in self.vace_layers
])
# vace patch embeddings
self.vace_patch_embedding = nn.Conv3d(
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
)
if recammaster :
dim=self.blocks[0].self_attn.q.weight.shape[0]
for block in self.blocks:
block.cam_encoder = nn.Linear(12, dim)
block.projector = nn.Linear(dim, dim)
block.cam_encoder.weight.data.zero_()
block.cam_encoder.bias.data.zero_()
block.projector.weight = nn.Parameter(torch.eye(dim))
block.projector.bias = nn.Parameter(torch.zeros(dim))
if fantasytalking_dim > 0:
from fantasytalking.model import WanCrossAttentionProcessor
for block in self.blocks:
block.cross_attn.processor = WanCrossAttentionProcessor(fantasytalking_dim, dim)
def lock_layers_dtypes(self, hybrid_dtype = None, dtype = torch.float32):
layer_list = [self.head, self.head.head, self.patch_embedding]
target_dype= dtype
layer_list2 = [ self.time_embedding, self.time_embedding[0], self.time_embedding[2],
self.time_projection, self.time_projection[1]] #, self.text_embedding, self.text_embedding[0], self.text_embedding[2] ]
for block in self.blocks:
layer_list2 += [block.norm3]
if hasattr(self, "fps_embedding"):
layer_list2 += [self.fps_embedding, self.fps_projection, self.fps_projection[0], self.fps_projection[2]]
if hasattr(self, "vace_patch_embedding"):
layer_list2 += [self.vace_patch_embedding]
layer_list2 += [self.vace_blocks[0].before_proj]
for block in self.vace_blocks:
layer_list2 += [block.after_proj, block.norm3]
target_dype2 = hybrid_dtype if hybrid_dtype != None else dtype
# cam master
if hasattr(self.blocks[0], "projector"):
for block in self.blocks:
layer_list2 += [block.projector]
for current_layer_list, current_dtype in zip([layer_list, layer_list2], [target_dype, target_dype2]):
for layer in current_layer_list:
layer._lock_dtype = dtype
if hasattr(layer, "weight") and layer.weight.dtype != current_dtype :
layer.weight.data = layer.weight.data.to(current_dtype)
if hasattr(layer, "bias"):
layer.bias.data = layer.bias.data.to(current_dtype)
self._lock_dtype = dtype
def compute_teacache_threshold(self, start_step, timesteps = None, speed_factor =0):
modulation_dtype = self.time_projection[1].weight.dtype
rescale_func = np.poly1d(self.coefficients)
e_list = []
for t in timesteps:
t = torch.stack([t])
time_emb = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(modulation_dtype) ) # b, dim
e_list.append(time_emb)
best_deltas = None
best_threshold = 0.01
best_diff = 1000
best_signed_diff = 1000
target_nb_steps= int(len(timesteps) / speed_factor)
threshold = 0.01
while threshold <= 0.6:
accumulated_rel_l1_distance =0
nb_steps = 0
diff = 1000
deltas = []
for i, t in enumerate(timesteps):
skip = False
if not (i<=start_step or i== len(timesteps)-1):
delta = abs(rescale_func(((e_list[i]-e_list[i-1]).abs().mean() / e_list[i-1].abs().mean()).cpu().item()))
# deltas.append(delta)
accumulated_rel_l1_distance += delta
if accumulated_rel_l1_distance < threshold:
skip = True
# deltas.append("SKIP")
else:
accumulated_rel_l1_distance = 0
if not skip:
nb_steps += 1
signed_diff = target_nb_steps - nb_steps
diff = abs(signed_diff)
if diff < best_diff:
best_threshold = threshold
best_deltas = deltas
best_diff = diff
best_signed_diff = signed_diff
elif diff > best_diff:
break
threshold += 0.01
self.rel_l1_thresh = best_threshold
print(f"Tea Cache, best threshold found:{best_threshold:0.2f} with gain x{len(timesteps)/(target_nb_steps - best_signed_diff):0.2f} for a target of x{speed_factor}")
# print(f"deltas:{best_deltas}")
return best_threshold
def forward(
self,
x,
t,
context,
vace_context = None,
vace_context_scale=[1.0],
clip_fea=None,
y=None,
freqs = None,
pipeline = None,
current_step = 0,
x_id= 0,
max_steps = 0,
slg_layers=None,
callback = None,
cam_emb: torch.Tensor = None,
fps = None,
causal_block_size = 1,
causal_attention = False,
audio_proj=None,
audio_context_lens=None,
audio_scale=None,
):
# patch_dtype = self.patch_embedding.weight.dtype
modulation_dtype = self.time_projection[1].weight.dtype
if self.model_type == 'i2v':
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if torch.is_tensor(freqs) and freqs.device != device:
freqs = freqs.to(device)
chipmunk = offload.shared_state.get("_chipmunk", False)
if chipmunk:
# from chipmunk.ops.voxel import voxel_chunk_no_padding, reverse_voxel_chunk_no_padding
voxel_shape = (4, 6, 8)
x_list = x
joint_pass = len(x_list) > 1
is_source_x = [ x.data_ptr() == x_list[0].data_ptr() and i > 0 for i, x in enumerate(x_list) ]
last_x_idx = 0
for i, (is_source, x) in enumerate(zip(is_source_x, x_list)):
if is_source:
x_list[i] = x_list[0].clone()
last_x_idx = i
else:
# image source
if y is not None:
x = torch.cat([x, y], dim=0)
# embeddings
x = self.patch_embedding(x.unsqueeze(0)).to(modulation_dtype)
grid_sizes = x.shape[2:]
if chipmunk:
x = x.unsqueeze(-1)
x_og_shape = x.shape
x = voxel_chunk_no_padding(x, voxel_shape).squeeze(-1).transpose(1, 2)
else:
x = x.flatten(2).transpose(1, 2)
x_list[i] = x
x, y = None, None
block_mask = None
if causal_attention and causal_block_size > 0 and False: # NEVER WORKED
frame_num = grid_sizes[0]
height = grid_sizes[1]
width = grid_sizes[2]
block_num = frame_num // causal_block_size
range_tensor = torch.arange(block_num).view(-1, 1)
range_tensor = range_tensor.repeat(1, causal_block_size).flatten()
causal_mask = range_tensor.unsqueeze(0) <= range_tensor.unsqueeze(1) # f, f
causal_mask = causal_mask.view(frame_num, 1, 1, frame_num, 1, 1).to(x[0].device)
causal_mask = causal_mask.repeat(1, height, width, 1, height, width)
causal_mask = causal_mask.reshape(frame_num * height * width, frame_num * height * width)
block_mask = causal_mask.unsqueeze(0).unsqueeze(0)
del causal_mask
offload.shared_state["embed_sizes"] = grid_sizes
offload.shared_state["step_no"] = current_step
offload.shared_state["max_steps"] = max_steps
_flag_df = t.dim() == 2
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(modulation_dtype) # self.patch_embedding.weight.dtype)
) # b, dim
e0 = self.time_projection(e).unflatten(1, (6, self.dim)).to(e.dtype)
if self.inject_sample_info:
fps = torch.tensor(fps, dtype=torch.long, device=device)
fps_emb = self.fps_embedding(fps).to(e.dtype)
if _flag_df:
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1)
else:
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))
# context
context = [self.text_embedding( torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))] ).unsqueeze(0) ) for u in context ]
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = [ torch.cat( [context_clip, u ], dim=1 ) for u in context ]
context_list = context
if audio_scale != None:
audio_scale_list = audio_scale
else:
audio_scale_list = [None] * len(x_list)
# arguments
kwargs = dict(
grid_sizes=grid_sizes,
freqs=freqs,
cam_emb = cam_emb,
block_mask = block_mask,
audio_proj=audio_proj,
audio_context_lens=audio_context_lens,
)
if vace_context == None:
hints_list = [None ] *len(x_list)
else:
# Vace embeddings
c = [self.vace_patch_embedding(u.to(self.vace_patch_embedding.weight.dtype).unsqueeze(0)) for u in vace_context]
c = [u.flatten(2).transpose(1, 2) for u in c]
kwargs['context_scale'] = vace_context_scale
hints_list = [ [ [sub_c] for sub_c in c] for _ in range(len(x_list)) ]
del c
should_calc = True
if self.enable_cache:
if x_id != 0:
should_calc = self.should_calc
else:
if current_step <= self.cache_start_step or current_step == self.num_steps-1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
rescale_func = np.poly1d(self.coefficients)
delta = abs(rescale_func(((e-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()))
self.accumulated_rel_l1_distance += delta
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
self.teacache_skipped_steps += 1
# print(f"Teacache Skipped Step no {current_step} ({self.teacache_skipped_steps}/{current_step}), delta={delta}" )
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = e
self.should_calc = should_calc
if not should_calc:
if joint_pass:
for i, x in enumerate(x_list):
x += self.previous_residual[i]
else:
x = x_list[0]
x += self.previous_residual[x_id]
x = None
else:
if self.enable_cache:
if joint_pass:
self.previous_residual = [ None ] * len(self.previous_residual)
else:
self.previous_residual[x_id] = None
ori_hidden_states = [ None ] * len(x_list)
ori_hidden_states[0] = x_list[0].clone()
for i in range(1, len(x_list)):
ori_hidden_states[i] = ori_hidden_states[0] if is_source_x[i] else x_list[i].clone()
for block_idx, block in enumerate(self.blocks):
offload.shared_state["layer"] = block_idx
if callback != None:
callback(-1, None, False, True)
if pipeline._interrupt:
return [None] * len(x_list)
if (x_id != 0 or joint_pass) and slg_layers is not None and block_idx in slg_layers:
if not joint_pass:
continue
x_list[0] = block(x_list[0], context = context_list[0], e= e0, **kwargs)
else:
for i, (x, context, hints, audio_scale) in enumerate(zip(x_list, context_list, hints_list, audio_scale_list)):
x_list[i] = block(x, context = context, hints= hints, audio_scale= audio_scale, e= e0, **kwargs)
del x
del context, hints
if self.enable_cache:
if joint_pass:
for i, (x, ori, is_source) in enumerate(zip(x_list, ori_hidden_states, is_source_x)) :
if i == 0 or is_source and i != last_x_idx :
self.previous_residual[i] = torch.sub(x, ori)
else:
self.previous_residual[i] = ori
torch.sub(x, ori, out=self.previous_residual[i])
ori_hidden_states[i] = None
x , ori = None, None
else:
residual = ori_hidden_states[0] # just to have a readable code
torch.sub(x_list[0], ori_hidden_states[0], out=residual)
self.previous_residual[x_id] = residual
residual, ori_hidden_states = None, None
for i, x in enumerate(x_list):
if chipmunk:
x = reverse_voxel_chunk_no_padding(x.transpose(1, 2).unsqueeze(-1), x_og_shape, voxel_shape).squeeze(-1)
x = x.flatten(2).transpose(1, 2)
# head
x = self.head(x, e)
# unpatchify
x_list[i] = self.unpatchify(x, grid_sizes)
del x
return [x[0].float() for x in x_list]
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
out = []
for u in x:
u = u[:math.prod(grid_sizes)].view(*grid_sizes, *self.patch_size, c)
u = torch.einsum('fhwpqrc->cfphqwr', u)
u = u.reshape(c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
out.append(u)
return out
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=.02)
# init output layer
nn.init.zeros_(self.head.head.weight)
|