Wan2GP / wan /modules /attention.py
zxymimi23451's picture
Upload 258 files
78360e7 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
from importlib.metadata import version
from mmgp import offload
import torch.nn.functional as F
major, minor = torch.cuda.get_device_capability(None)
bfloat16_supported = major >= 8
try:
from xformers.ops import memory_efficient_attention
except ImportError:
memory_efficient_attention = None
try:
import flash_attn_interface
FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_3_AVAILABLE = False
try:
import flash_attn
FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False
flash_attn = None
try:
from sageattention import sageattn_varlen
def sageattn_varlen_wrapper(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
):
return sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
except ImportError:
sageattn_varlen_wrapper = None
import warnings
try:
from sageattention import sageattn
from .sage2_core import sageattn as alt_sageattn, is_sage2_supported
sage2_supported = is_sage2_supported()
except ImportError:
sageattn = None
alt_sageattn = None
sage2_supported = False
# @torch.compiler.disable()
def sageattn_wrapper(
qkv_list,
attention_length
):
q,k, v = qkv_list
if True:
qkv_list = [q,k,v]
del q, k ,v
o = alt_sageattn(qkv_list, tensor_layout="NHD")
else:
o = sageattn(q, k, v, tensor_layout="NHD")
del q, k ,v
qkv_list.clear()
return o
# try:
# if True:
# from .sage2_core import sageattn_qk_int8_pv_fp8_window_cuda
# @torch.compiler.disable()
# def sageattn_window_wrapper(
# qkv_list,
# attention_length,
# window
# ):
# q,k, v = qkv_list
# padding_length = q.shape[0] -attention_length
# q = q[:attention_length, :, : ].unsqueeze(0)
# k = k[:attention_length, :, : ].unsqueeze(0)
# v = v[:attention_length, :, : ].unsqueeze(0)
# qkvl_list = [q, k , v]
# del q, k ,v
# o = sageattn_qk_int8_pv_fp8_window_cuda(qkvl_list, tensor_layout="NHD", window = window).squeeze(0)
# qkv_list.clear()
# if padding_length > 0:
# o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device ) ], 0)
# return o
# except ImportError:
# sageattn = sageattn_qk_int8_pv_fp8_window_cuda
@torch.compiler.disable()
def sdpa_wrapper(
qkv_list,
attention_length,
attention_mask = None
):
q, k, v = qkv_list
q = q.transpose(1,2)
k = k.transpose(1,2)
v = v.transpose(1,2)
if attention_mask != None:
attention_mask = attention_mask.transpose(1,2)
o = F.scaled_dot_product_attention( q, k, v, attn_mask=attention_mask, is_causal=False).transpose(1,2)
del q, k ,v
qkv_list.clear()
return o
def get_attention_modes():
ret = ["sdpa", "auto"]
if flash_attn != None:
ret.append("flash")
if memory_efficient_attention != None:
ret.append("xformers")
if sageattn_varlen_wrapper != None:
ret.append("sage")
if sageattn != None and version("sageattention").startswith("2") :
ret.append("sage2")
return ret
def get_supported_attention_modes():
ret = get_attention_modes()
if not sage2_supported:
if "sage2" in ret:
ret.remove("sage2")
major, minor = torch.cuda.get_device_capability()
if major < 7:
if "sage" in ret:
ret.remove("sage")
return ret
__all__ = [
'pay_attention',
'attention',
]
def get_cu_seqlens(batch_size, lens, max_len):
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
for i in range(batch_size):
s = lens[i]
s1 = i * max_len + s
s2 = (i + 1) * max_len
cu_seqlens[2 * i + 1] = s1
cu_seqlens[2 * i + 2] = s2
return cu_seqlens
@torch.compiler.disable()
def pay_attention(
qkv_list,
dropout_p=0.,
softmax_scale=None,
causal=False,
window_size=(-1, -1),
deterministic=False,
version=None,
force_attention= None,
attention_mask = None,
cross_attn= False,
q_lens = None,
k_lens = None,
):
# format : torch.Size([batches, tokens, heads, head_features])
# assume if q_lens is non null, each q is padded up to lq (one q out of two will need to be discarded or ignored)
# assume if k_lens is non null, each k is padded up to lk (one k out of two will need to be discarded or ignored)
if attention_mask != None:
force_attention = "sdpa"
if attention_mask.dtype == torch.bfloat16 and not bfloat16_supported:
attention_mask = attention_mask.to(torch.float16)
attn = offload.shared_state["_attention"] if force_attention== None else force_attention
q,k,v = qkv_list
qkv_list.clear()
out_dtype = q.dtype
if q.dtype == torch.bfloat16 and not bfloat16_supported:
q = q.to(torch.float16)
k = k.to(torch.float16)
v = v.to(torch.float16)
final_padding = 0
b, lq, lk = q.size(0), q.size(1), k.size(1)
q = q.to(v.dtype)
k = k.to(v.dtype)
if attn == "chipmunk":
from src.chipmunk.modules import SparseDiffMlp, SparseDiffAttn
from src.chipmunk.util import LayerCounter, GLOBAL_CONFIG
if b > 1 and k_lens != None and attn in ("sage2", "sdpa"):
assert attention_mask == None
# Poor's man var k len attention
assert q_lens == None
chunk_sizes = []
k_sizes = []
current_size = k_lens[0]
current_count= 1
for k_len in k_lens[1:]:
if k_len == current_size:
current_count += 1
else:
chunk_sizes.append(current_count)
k_sizes.append(current_size)
current_count = 1
current_size = k_len
chunk_sizes.append(current_count)
k_sizes.append(k_len)
if len(chunk_sizes) > 1 or k_lens[0] != k.shape[1]:
q_chunks =torch.split(q, chunk_sizes)
k_chunks =torch.split(k, chunk_sizes)
v_chunks =torch.split(v, chunk_sizes)
q, k, v = None, None, None
k_chunks = [ u[:, :sz] for u, sz in zip(k_chunks, k_sizes)]
v_chunks = [ u[:, :sz] for u, sz in zip(v_chunks, k_sizes)]
o = []
for sub_q, sub_k, sub_v in zip(q_chunks, k_chunks, v_chunks):
qkv_list = [sub_q, sub_k, sub_v]
sub_q, sub_k, sub_v = None, None, None
o.append( pay_attention(qkv_list) )
q_chunks, k_chunks, v_chunks = None, None, None
o = torch.cat(o, dim = 0)
return o
elif (q_lens != None or k_lens != None) and attn in ("sage2", "sdpa"):
assert b == 1
szq = q_lens[0].item() if q_lens != None else lq
szk = k_lens[0].item() if k_lens != None else lk
final_padding = lq - szq
q = q[:, :szq]
k = k[:, :szk]
v = v[:, :szk]
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
warnings.warn(
'Flash attention 3 is not available, use flash attention 2 instead.'
)
if attn=="sage" or attn=="flash":
if b != 1 :
if k_lens == None:
k_lens = torch.tensor( [lk] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
if q_lens == None:
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
k = k.reshape(-1, *k.shape[-2:])
v = v.reshape(-1, *v.shape[-2:])
q = q.reshape(-1, *q.shape[-2:])
cu_seqlens_q=get_cu_seqlens(b, q_lens, lq)
cu_seqlens_k=get_cu_seqlens(b, k_lens, lk)
else:
szq = q_lens[0].item() if q_lens != None else lq
szk = k_lens[0].item() if k_lens != None else lk
if szq != lq or szk != lk:
cu_seqlens_q = torch.tensor([0, szq, lq], dtype=torch.int32, device="cuda")
cu_seqlens_k = torch.tensor([0, szk, lk], dtype=torch.int32, device="cuda")
else:
cu_seqlens_q = torch.tensor([0, lq], dtype=torch.int32, device="cuda")
cu_seqlens_k = torch.tensor([0, lk], dtype=torch.int32, device="cuda")
q = q.squeeze(0)
k = k.squeeze(0)
v = v.squeeze(0)
# apply attention
if attn=="sage":
x = sageattn_varlen_wrapper(
q=q,
k=k,
v=v,
cu_seqlens_q= cu_seqlens_q,
cu_seqlens_kv= cu_seqlens_k,
max_seqlen_q=lq,
max_seqlen_kv=lk,
).unflatten(0, (b, lq))
elif attn=="sage2":
import math
if cross_attn or True:
qkv_list = [q,k,v]
del q,k,v
x = sageattn_wrapper(qkv_list, lq) #.unsqueeze(0)
# else:
# layer = offload.shared_state["layer"]
# embed_sizes = offload.shared_state["embed_sizes"]
# current_step = offload.shared_state["step_no"]
# max_steps = offload.shared_state["max_steps"]
# nb_latents = embed_sizes[0] * embed_sizes[1]* embed_sizes[2]
# window = 0
# start_window_step = int(max_steps * 0.3)
# start_layer = 10
# end_layer = 30
# if (layer < start_layer or layer > end_layer ) or current_step <start_window_step:
# window = 0
# else:
# # coef = min((max_steps - current_step)/(max_steps-start_window_step),1)*max(min((25 - layer)/(25-start_layer),1),0) * 0.7 + 0.3
# coef = 0.3
# print(f"step: {current_step}, layer: {layer}, coef:{coef:0.1f}]")
# window = math.ceil(coef* nb_latents)
# invert_spaces = (layer + current_step) % 2 == 0 and window > 0
# invert_spaces = False
# def flip(q):
# q = q.reshape(*embed_sizes, *q.shape[-2:])
# q = q.transpose(0,2)
# q = q.contiguous()
# q = q.transpose(0,2)
# q = q.reshape( -1, *q.shape[-2:])
# return q
# def flop(q):
# q = q.reshape(embed_sizes[2], embed_sizes[1], embed_sizes[0] , *q.shape[-2:])
# q = q.transpose(0,2)
# q = q.contiguous()
# q = q.transpose(0,2)
# q = q.reshape( -1, *q.shape[-2:])
# return q
# if invert_spaces:
# q = flip(q)
# k = flip(k)
# v = flip(v)
# qkv_list = [q,k,v]
# del q,k,v
# x = sageattn_window_wrapper(qkv_list, lq, window= window) #.unsqueeze(0)
# if invert_spaces:
# x = flop(x)
# x = x.unsqueeze(0)
elif attn=="sdpa":
qkv_list = [q, k, v]
del q ,k ,v
x = sdpa_wrapper( qkv_list, lq, attention_mask = attention_mask) #.unsqueeze(0)
elif attn=="flash" and version == 3:
# Note: dropout_p, window_size are not supported in FA3 now.
x = flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q= cu_seqlens_q,
cu_seqlens_k= cu_seqlens_k,
seqused_q=None,
seqused_k=None,
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic)[0].unflatten(0, (b, lq))
elif attn=="flash":
x = flash_attn.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q= cu_seqlens_q,
cu_seqlens_k= cu_seqlens_k,
max_seqlen_q=lq,
max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic).unflatten(0, (b, lq))
# output
elif attn=="xformers":
from xformers.ops.fmha.attn_bias import BlockDiagonalPaddedKeysMask
if k_lens == None and q_lens == None:
x = memory_efficient_attention(q, k, v )
elif k_lens != None and q_lens == None:
attn_mask = BlockDiagonalPaddedKeysMask.from_seqlens([lq] * b , lk , list(k_lens) )
x = memory_efficient_attention(q, k, v, attn_bias= attn_mask )
elif b == 1:
szq = q_lens[0].item() if q_lens != None else lq
szk = k_lens[0].item() if k_lens != None else lk
attn_mask = BlockDiagonalPaddedKeysMask.from_seqlens([szq, lq - szq ] , lk , [szk, 0] )
x = memory_efficient_attention(q, k, v, attn_bias= attn_mask )
else:
assert False
x = x.type(out_dtype)
if final_padding > 0:
x = torch.cat([x, torch.empty( (x.shape[0], final_padding, *x.shape[-2:]), dtype= x.dtype, device=x.device ) ], 1)
return x