File size: 13,819 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import torch
from importlib.metadata import version
from mmgp import offload
import torch.nn.functional as F

major, minor = torch.cuda.get_device_capability(None)
bfloat16_supported =  major >= 8 

try:
    from xformers.ops import memory_efficient_attention
except ImportError:
    memory_efficient_attention = None

try:
    import flash_attn_interface
    FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_3_AVAILABLE = False

try:
    import flash_attn
    FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_2_AVAILABLE = False
    flash_attn = None

try:
    from sageattention import sageattn_varlen
    def sageattn_varlen_wrapper(

            q,

            k,

            v,

            cu_seqlens_q,

            cu_seqlens_kv,

            max_seqlen_q,

            max_seqlen_kv,

        ):
        return sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
    
except ImportError:
    sageattn_varlen_wrapper = None


import warnings

try:
    from sageattention import sageattn
    from .sage2_core import sageattn as alt_sageattn, is_sage2_supported
    sage2_supported =  is_sage2_supported()
except ImportError:
    sageattn = None
    alt_sageattn = None
    sage2_supported = False
# @torch.compiler.disable()
def sageattn_wrapper(

        qkv_list,

        attention_length

    ):
    q,k, v = qkv_list
    if True:
        qkv_list = [q,k,v]
        del q, k ,v
        o = alt_sageattn(qkv_list, tensor_layout="NHD")
    else:
        o = sageattn(q, k, v, tensor_layout="NHD")
        del q, k ,v

    qkv_list.clear()

    return o

# try:
# if True:
    # from .sage2_core import sageattn_qk_int8_pv_fp8_window_cuda
    # @torch.compiler.disable()
    # def sageattn_window_wrapper(
    #         qkv_list,
    #         attention_length,
    #         window
    #     ):
    #     q,k, v = qkv_list
    #     padding_length = q.shape[0] -attention_length
    #     q = q[:attention_length, :, : ].unsqueeze(0)
    #     k = k[:attention_length, :, : ].unsqueeze(0)
    #     v = v[:attention_length, :, : ].unsqueeze(0)
    #     qkvl_list = [q, k , v]
    #     del q, k ,v
    #     o = sageattn_qk_int8_pv_fp8_window_cuda(qkvl_list, tensor_layout="NHD", window = window).squeeze(0)
    #     qkv_list.clear()

    #     if padding_length > 0:
    #         o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device  ) ], 0)

    #     return o
# except ImportError:
#     sageattn = sageattn_qk_int8_pv_fp8_window_cuda

@torch.compiler.disable()
def sdpa_wrapper(

        qkv_list,

        attention_length,

        attention_mask = None        

    ):
    q, k, v = qkv_list

    q = q.transpose(1,2)
    k = k.transpose(1,2)
    v = v.transpose(1,2)
    if attention_mask != None:
        attention_mask = attention_mask.transpose(1,2)
    o = F.scaled_dot_product_attention( q, k, v, attn_mask=attention_mask, is_causal=False).transpose(1,2)
    del q, k ,v
    qkv_list.clear()

    return o


def get_attention_modes():
    ret = ["sdpa", "auto"]
    if flash_attn != None:
        ret.append("flash")
    if memory_efficient_attention != None:
        ret.append("xformers")
    if sageattn_varlen_wrapper != None:
        ret.append("sage")
    if sageattn != None and version("sageattention").startswith("2") :
        ret.append("sage2")
        
    return ret

def get_supported_attention_modes():
    ret = get_attention_modes()
    if not sage2_supported:
        if "sage2" in ret:
            ret.remove("sage2")

    major, minor = torch.cuda.get_device_capability()
    if  major < 7:
        if "sage" in ret:
            ret.remove("sage")
    return ret

__all__ = [
    'pay_attention',
    'attention',
]

def get_cu_seqlens(batch_size, lens, max_len):
    cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")

    for i in range(batch_size):
        s = lens[i] 
        s1 = i * max_len + s
        s2 = (i + 1) * max_len
        cu_seqlens[2 * i + 1] = s1
        cu_seqlens[2 * i + 2] = s2

    return cu_seqlens

@torch.compiler.disable()
def pay_attention(

    qkv_list,

    dropout_p=0.,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),

    deterministic=False,

    version=None,

    force_attention= None,

    attention_mask = None,

    cross_attn= False,

    q_lens = None,

    k_lens = None,

):
    # format : torch.Size([batches, tokens, heads, head_features])
    # assume if q_lens is non null, each q is padded up to lq (one q out of two will need to be discarded or ignored)
    # assume if k_lens is non null, each k is padded up to lk (one k out of two will need to be discarded or ignored)
    if attention_mask != None:
        force_attention = "sdpa"
        if  attention_mask.dtype == torch.bfloat16 and not bfloat16_supported:
            attention_mask = attention_mask.to(torch.float16)
    attn = offload.shared_state["_attention"] if force_attention== None else force_attention

    q,k,v = qkv_list
    qkv_list.clear()
    out_dtype = q.dtype
    if  q.dtype == torch.bfloat16 and not bfloat16_supported:
        q = q.to(torch.float16)
        k = k.to(torch.float16)
        v = v.to(torch.float16)
    final_padding = 0
    b, lq, lk = q.size(0), q.size(1), k.size(1)

    q = q.to(v.dtype)
    k = k.to(v.dtype)

    if attn == "chipmunk":
        from src.chipmunk.modules import SparseDiffMlp, SparseDiffAttn
        from src.chipmunk.util import LayerCounter, GLOBAL_CONFIG

    if b > 1 and k_lens != None and attn in ("sage2", "sdpa"):
        assert attention_mask == None
        # Poor's man var k len attention
        assert q_lens == None
        chunk_sizes = []
        k_sizes = []
        current_size = k_lens[0]
        current_count= 1
        for k_len in k_lens[1:]:
            if k_len == current_size:
                current_count += 1
            else:
                chunk_sizes.append(current_count)
                k_sizes.append(current_size)
                current_count = 1
                current_size = k_len
        chunk_sizes.append(current_count)
        k_sizes.append(k_len)
        if len(chunk_sizes) > 1 or k_lens[0] != k.shape[1]:
            q_chunks =torch.split(q, chunk_sizes)
            k_chunks =torch.split(k, chunk_sizes)
            v_chunks =torch.split(v, chunk_sizes)
            q, k, v = None, None, None
            k_chunks = [ u[:, :sz] for u, sz in zip(k_chunks, k_sizes)]
            v_chunks = [ u[:, :sz] for u, sz in zip(v_chunks, k_sizes)]
            o = []
            for sub_q, sub_k, sub_v in zip(q_chunks, k_chunks, v_chunks): 
                qkv_list = [sub_q, sub_k, sub_v]
                sub_q, sub_k, sub_v = None, None, None
                o.append( pay_attention(qkv_list) )
            q_chunks, k_chunks, v_chunks = None, None, None
            o = torch.cat(o, dim = 0)
            return o
    elif (q_lens != None or k_lens != None) and attn in ("sage2", "sdpa"):
        assert b == 1
        szq = q_lens[0].item() if q_lens != None else lq
        szk = k_lens[0].item() if k_lens != None else lk
        final_padding = lq - szq
        q = q[:, :szq]
        k = k[:, :szk]
        v = v[:, :szk]

    if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
        warnings.warn(
            'Flash attention 3 is not available, use flash attention 2 instead.'
        )

    if attn=="sage" or attn=="flash":
        if b != 1 :
            if k_lens == None:
                k_lens = torch.tensor( [lk] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
            if q_lens == None:
                q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True)
            k = k.reshape(-1, *k.shape[-2:])
            v = v.reshape(-1, *v.shape[-2:])
            q = q.reshape(-1, *q.shape[-2:])
            cu_seqlens_q=get_cu_seqlens(b, q_lens, lq) 
            cu_seqlens_k=get_cu_seqlens(b, k_lens, lk) 
        else:
            szq = q_lens[0].item() if q_lens != None else lq
            szk = k_lens[0].item() if k_lens != None else lk
            if szq != lq or szk != lk:
                cu_seqlens_q = torch.tensor([0, szq, lq], dtype=torch.int32, device="cuda")
                cu_seqlens_k = torch.tensor([0, szk, lk], dtype=torch.int32, device="cuda")
            else:
                cu_seqlens_q = torch.tensor([0, lq], dtype=torch.int32, device="cuda")
                cu_seqlens_k = torch.tensor([0, lk], dtype=torch.int32, device="cuda")
            q = q.squeeze(0)
            k = k.squeeze(0)
            v = v.squeeze(0)


    # apply attention
    if attn=="sage":
        x = sageattn_varlen_wrapper(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q= cu_seqlens_q,
            cu_seqlens_kv= cu_seqlens_k,
            max_seqlen_q=lq,
            max_seqlen_kv=lk,
        ).unflatten(0, (b, lq))
    elif attn=="sage2":
        import math
        if cross_attn or True:
            qkv_list = [q,k,v]
            del q,k,v

            x = sageattn_wrapper(qkv_list, lq) #.unsqueeze(0)
        # else:
        #     layer =  offload.shared_state["layer"]
        #     embed_sizes = offload.shared_state["embed_sizes"] 
        #     current_step = offload.shared_state["step_no"] 
        #     max_steps = offload.shared_state["max_steps"]  


        #     nb_latents =  embed_sizes[0] * embed_sizes[1]* embed_sizes[2]

        #     window = 0
        #     start_window_step = int(max_steps * 0.3)
        #     start_layer = 10
        #     end_layer = 30
        #     if (layer < start_layer or layer > end_layer )  or current_step <start_window_step: 
        #         window = 0
        #     else:
        #         # coef =  min((max_steps - current_step)/(max_steps-start_window_step),1)*max(min((25 - layer)/(25-start_layer),1),0) * 0.7 + 0.3
        #         coef = 0.3
        #         print(f"step: {current_step}, layer: {layer}, coef:{coef:0.1f}]")
        #         window =  math.ceil(coef* nb_latents)

        #     invert_spaces = (layer + current_step) % 2 == 0 and window > 0
        #     invert_spaces = False
        #     def flip(q):
        #         q = q.reshape(*embed_sizes, *q.shape[-2:])
        #         q = q.transpose(0,2)
        #         q = q.contiguous()
        #         q = q.transpose(0,2)
        #         q = q.reshape( -1, *q.shape[-2:])
        #         return q

        #     def flop(q):
        #         q = q.reshape(embed_sizes[2], embed_sizes[1], embed_sizes[0] , *q.shape[-2:])
        #         q = q.transpose(0,2)
        #         q = q.contiguous()
        #         q = q.transpose(0,2)
        #         q = q.reshape( -1, *q.shape[-2:])
        #         return q


        #     if invert_spaces:

        #         q = flip(q)
        #         k = flip(k)
        #         v = flip(v)            
        #     qkv_list = [q,k,v]
        #     del q,k,v



        #     x = sageattn_window_wrapper(qkv_list, lq, window= window) #.unsqueeze(0)

        #     if invert_spaces:
        #         x = flop(x)
        #     x = x.unsqueeze(0)

        
    elif attn=="sdpa":
        qkv_list = [q, k, v]
        del q ,k ,v
        x = sdpa_wrapper( qkv_list, lq, attention_mask = attention_mask) #.unsqueeze(0)
    elif attn=="flash" and version == 3:
        # Note: dropout_p, window_size are not supported in FA3 now.
        x = flash_attn_interface.flash_attn_varlen_func(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q= cu_seqlens_q,
            cu_seqlens_k= cu_seqlens_k,
            seqused_q=None,
            seqused_k=None,
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            softmax_scale=softmax_scale,
            causal=causal,
            deterministic=deterministic)[0].unflatten(0, (b, lq))
    elif attn=="flash":
        x = flash_attn.flash_attn_varlen_func(
            q=q,
            k=k,
            v=v,
            cu_seqlens_q= cu_seqlens_q,
            cu_seqlens_k= cu_seqlens_k,
            max_seqlen_q=lq,
            max_seqlen_k=lk,
            dropout_p=dropout_p,
            softmax_scale=softmax_scale,
            causal=causal,
            window_size=window_size,
            deterministic=deterministic).unflatten(0, (b, lq))

    # output

    elif attn=="xformers":
        from xformers.ops.fmha.attn_bias import BlockDiagonalPaddedKeysMask
        if k_lens == None and q_lens == None:
            x = memory_efficient_attention(q, k, v )
        elif k_lens != None and q_lens == None:
            attn_mask = BlockDiagonalPaddedKeysMask.from_seqlens([lq] * b , lk , list(k_lens) ) 
            x = memory_efficient_attention(q, k, v, attn_bias= attn_mask )
        elif b == 1:
            szq = q_lens[0].item() if q_lens != None else lq
            szk = k_lens[0].item() if k_lens != None else lk
            attn_mask = BlockDiagonalPaddedKeysMask.from_seqlens([szq, lq - szq ] , lk , [szk, 0] ) 
            x = memory_efficient_attention(q, k, v, attn_bias= attn_mask )
        else:
            assert False
    x = x.type(out_dtype)
    if final_padding > 0:
        x = torch.cat([x, torch.empty( (x.shape[0], final_padding, *x.shape[-2:]), dtype= x.dtype, device=x.device  ) ], 1)


    return x