Wan2GP / i2v_inference.py
zxymimi23451's picture
Upload 258 files
78360e7 verified
import os
import time
import argparse
import json
import torch
import traceback
import gc
import random
# These imports rely on your existing code structure
# They must match the location of your WAN code, etc.
import wan
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
from wan.modules.attention import get_attention_modes
from wan.utils.utils import cache_video
from mmgp import offload, safetensors2, profile_type
try:
import triton
except ImportError:
pass
DATA_DIR = "ckpts"
# --------------------------------------------------
# HELPER FUNCTIONS
# --------------------------------------------------
def sanitize_file_name(file_name):
"""Clean up file name from special chars."""
return (
file_name.replace("/", "")
.replace("\\", "")
.replace(":", "")
.replace("|", "")
.replace("?", "")
.replace("<", "")
.replace(">", "")
.replace('"', "")
)
def extract_preset(lset_name, lora_dir, loras):
"""
Load a .lset JSON that lists the LoRA files to apply, plus multipliers
and possibly a suggested prompt prefix.
"""
lset_name = sanitize_file_name(lset_name)
if not lset_name.endswith(".lset"):
lset_name_filename = os.path.join(lora_dir, lset_name + ".lset")
else:
lset_name_filename = os.path.join(lora_dir, lset_name)
if not os.path.isfile(lset_name_filename):
raise ValueError(f"Preset '{lset_name}' not found in {lora_dir}")
with open(lset_name_filename, "r", encoding="utf-8") as reader:
text = reader.read()
lset = json.loads(text)
loras_choices_files = lset["loras"]
loras_choices = []
missing_loras = []
for lora_file in loras_choices_files:
# Build absolute path and see if it is in loras
full_lora_path = os.path.join(lora_dir, lora_file)
if full_lora_path in loras:
idx = loras.index(full_lora_path)
loras_choices.append(str(idx))
else:
missing_loras.append(lora_file)
if len(missing_loras) > 0:
missing_list = ", ".join(missing_loras)
raise ValueError(f"Missing LoRA files for preset: {missing_list}")
loras_mult_choices = lset["loras_mult"]
prompt_prefix = lset.get("prompt", "")
full_prompt = lset.get("full_prompt", False)
return loras_choices, loras_mult_choices, prompt_prefix, full_prompt
def get_attention_mode(args_attention, installed_modes):
"""
Decide which attention mode to use: either the user choice or auto fallback.
"""
if args_attention == "auto":
for candidate in ["sage2", "sage", "sdpa"]:
if candidate in installed_modes:
return candidate
return "sdpa" # last fallback
elif args_attention in installed_modes:
return args_attention
else:
raise ValueError(
f"Requested attention mode '{args_attention}' not installed. "
f"Installed modes: {installed_modes}"
)
def load_i2v_model(model_filename, text_encoder_filename, is_720p):
"""
Load the i2v model with a specific size config and text encoder.
"""
if is_720p:
print("Loading 14B-720p i2v model ...")
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir=DATA_DIR,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename
)
else:
print("Loading 14B-480p i2v model ...")
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir=DATA_DIR,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename
)
# Pipe structure
pipe = {
"transformer": wan_model.model,
"text_encoder": wan_model.text_encoder.model,
"text_encoder_2": wan_model.clip.model,
"vae": wan_model.vae.model
}
return wan_model, pipe
def setup_loras(pipe, lora_dir, lora_preset, num_inference_steps):
"""
Load loras from a directory, optionally apply a preset.
"""
from pathlib import Path
import glob
if not lora_dir or not Path(lora_dir).is_dir():
print("No valid --lora-dir provided or directory doesn't exist, skipping LoRA setup.")
return [], [], [], "", "", False
# Gather LoRA files
loras = sorted(
glob.glob(os.path.join(lora_dir, "*.sft"))
+ glob.glob(os.path.join(lora_dir, "*.safetensors"))
)
loras_names = [Path(x).stem for x in loras]
# Offload them with no activation
offload.load_loras_into_model(pipe["transformer"], loras, activate_all_loras=False)
# If user gave a preset, apply it
default_loras_choices = []
default_loras_multis_str = ""
default_prompt_prefix = ""
preset_applied_full_prompt = False
if lora_preset:
loras_choices, loras_mult, prefix, full_prompt = extract_preset(lora_preset, lora_dir, loras)
default_loras_choices = loras_choices
# If user stored loras_mult as a list or string in JSON, unify that to str
if isinstance(loras_mult, list):
# Just store them in a single line
default_loras_multis_str = " ".join([str(x) for x in loras_mult])
else:
default_loras_multis_str = str(loras_mult)
default_prompt_prefix = prefix
preset_applied_full_prompt = full_prompt
return (
loras,
loras_names,
default_loras_choices,
default_loras_multis_str,
default_prompt_prefix,
preset_applied_full_prompt
)
def parse_loras_and_activate(
transformer,
loras,
loras_choices,
loras_mult_str,
num_inference_steps
):
"""
Activate the chosen LoRAs with multipliers over the pipeline's transformer.
Supports stepwise expansions (like "0.5,0.8" for partial steps).
"""
if not loras or not loras_choices:
# no LoRAs selected
return
# Handle multipliers
def is_float_or_comma_list(x):
"""
Example: "0.5", or "0.8,1.0", etc. is valid.
"""
if not x:
return False
for chunk in x.split(","):
try:
float(chunk.strip())
except ValueError:
return False
return True
# Convert multiline or spaced lines to a single list
lines = [
line.strip()
for line in loras_mult_str.replace("\r", "\n").split("\n")
if line.strip() and not line.strip().startswith("#")
]
# Now combine them by space
joined_line = " ".join(lines) # "1.0 2.0,3.0"
if not joined_line.strip():
multipliers = []
else:
multipliers = joined_line.split(" ")
# Expand each item
final_multipliers = []
for mult in multipliers:
mult = mult.strip()
if not mult:
continue
if is_float_or_comma_list(mult):
# Could be "0.7" or "0.5,0.6"
if "," in mult:
# expand over steps
chunk_vals = [float(x.strip()) for x in mult.split(",")]
expanded = expand_list_over_steps(chunk_vals, num_inference_steps)
final_multipliers.append(expanded)
else:
final_multipliers.append(float(mult))
else:
raise ValueError(f"Invalid LoRA multiplier: '{mult}'")
# If fewer multipliers than chosen LoRAs => pad with 1.0
needed = len(loras_choices) - len(final_multipliers)
if needed > 0:
final_multipliers += [1.0]*needed
# Actually activate them
offload.activate_loras(transformer, loras_choices, final_multipliers)
def expand_list_over_steps(short_list, num_steps):
"""
If user gave (0.5, 0.8) for example, expand them over `num_steps`.
The expansion is simply linear slice across steps.
"""
result = []
inc = len(short_list) / float(num_steps)
idxf = 0.0
for _ in range(num_steps):
value = short_list[int(idxf)]
result.append(value)
idxf += inc
return result
def download_models_if_needed(transformer_filename_i2v, text_encoder_filename, local_folder=DATA_DIR):
"""
Checks if all required WAN 2.1 i2v files exist locally under 'ckpts/'.
If not, downloads them from a Hugging Face Hub repo.
Adjust the 'repo_id' and needed files as appropriate.
"""
import os
from pathlib import Path
try:
from huggingface_hub import hf_hub_download, snapshot_download
except ImportError as e:
raise ImportError(
"huggingface_hub is required for automatic model download. "
"Please install it via `pip install huggingface_hub`."
) from e
# Identify just the filename portion for each path
def basename(path_str):
return os.path.basename(path_str)
repo_id = "DeepBeepMeep/Wan2.1"
target_root = local_folder
# You can customize this list as needed for i2v usage.
# At minimum you need:
# 1) The requested i2v transformer file
# 2) The requested text encoder file
# 3) VAE file
# 4) The open-clip xlm-roberta-large weights
#
# If your i2v config references additional files, add them here.
needed_files = [
"Wan2.1_VAE.pth",
"models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
basename(text_encoder_filename),
basename(transformer_filename_i2v),
]
# The original script also downloads an entire "xlm-roberta-large" folder
# via snapshot_download. If you require that for your pipeline,
# you can add it here, for example:
subfolder_name = "xlm-roberta-large"
if not Path(os.path.join(target_root, subfolder_name)).exists():
snapshot_download(repo_id=repo_id, allow_patterns=subfolder_name + "/*", local_dir=target_root)
for filename in needed_files:
local_path = os.path.join(target_root, filename)
if not os.path.isfile(local_path):
print(f"File '{filename}' not found locally. Downloading from {repo_id} ...")
hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir=target_root
)
else:
# Already present
pass
print("All required i2v files are present.")
# --------------------------------------------------
# ARGUMENT PARSER
# --------------------------------------------------
def parse_args():
parser = argparse.ArgumentParser(
description="Image-to-Video inference using WAN 2.1 i2v"
)
# Model + Tools
parser.add_argument(
"--quantize-transformer",
action="store_true",
help="Use on-the-fly transformer quantization"
)
parser.add_argument(
"--compile",
action="store_true",
help="Enable PyTorch 2.0 compile for the transformer"
)
parser.add_argument(
"--attention",
type=str,
default="auto",
help="Which attention to use: auto, sdpa, sage, sage2, flash"
)
parser.add_argument(
"--profile",
type=int,
default=4,
help="Memory usage profile number [1..5]; see original script or use 2 if you have low VRAM"
)
parser.add_argument(
"--preload",
type=int,
default=0,
help="Megabytes of the diffusion model to preload in VRAM (only used in some profiles)"
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="Verbosity level [0..5]"
)
# i2v Model
parser.add_argument(
"--transformer-file",
type=str,
default=f"{DATA_DIR}/wan2.1_image2video_480p_14B_quanto_int8.safetensors",
help="Which i2v model to load"
)
parser.add_argument(
"--text-encoder-file",
type=str,
default=f"{DATA_DIR}/models_t5_umt5-xxl-enc-quanto_int8.safetensors",
help="Which text encoder to use"
)
# LoRA
parser.add_argument(
"--lora-dir",
type=str,
default="",
help="Path to a directory containing i2v LoRAs"
)
parser.add_argument(
"--lora-preset",
type=str,
default="",
help="A .lset preset name in the lora_dir to auto-apply"
)
# Generation Options
parser.add_argument("--prompt", type=str, default=None, required=True, help="Prompt for generation")
parser.add_argument("--negative-prompt", type=str, default="", help="Negative prompt")
parser.add_argument("--resolution", type=str, default="832x480", help="WxH")
parser.add_argument("--frames", type=int, default=64, help="Number of frames (16=1s if fps=16). Must be multiple of 4 +/- 1 in WAN.")
parser.add_argument("--steps", type=int, default=30, help="Number of denoising steps.")
parser.add_argument("--guidance-scale", type=float, default=5.0, help="Classifier-free guidance scale")
parser.add_argument("--flow-shift", type=float, default=3.0, help="Flow shift parameter. Generally 3.0 for 480p, 5.0 for 720p.")
parser.add_argument("--riflex", action="store_true", help="Enable RIFLEx for longer videos")
parser.add_argument("--teacache", type=float, default=0.25, help="TeaCache multiplier, e.g. 0.5, 2.0, etc.")
parser.add_argument("--teacache-start", type=float, default=0.1, help="Teacache start step percentage [0..100]")
parser.add_argument("--seed", type=int, default=-1, help="Random seed. -1 means random each time.")
parser.add_argument("--slg-layers", type=str, default=None, help="Which layers to use for skip layer guidance")
parser.add_argument("--slg-start", type=float, default=0.0, help="Percentage in to start SLG")
parser.add_argument("--slg-end", type=float, default=1.0, help="Percentage in to end SLG")
# LoRA usage
parser.add_argument("--loras-choices", type=str, default="", help="Comma-separated list of chosen LoRA indices or preset names to load. Usually you only use the preset.")
parser.add_argument("--loras-mult", type=str, default="", help="Multipliers for each chosen LoRA. Example: '1.0 1.2,1.3' etc.")
# Input
parser.add_argument(
"--input-image",
type=str,
default=None,
required=True,
help="Path to an input image (or multiple)."
)
parser.add_argument(
"--output-file",
type=str,
default="output.mp4",
help="Where to save the resulting video."
)
return parser.parse_args()
# --------------------------------------------------
# MAIN
# --------------------------------------------------
def main():
args = parse_args()
# Setup environment
offload.default_verboseLevel = args.verbose
installed_attn_modes = get_attention_modes()
# Decide attention
chosen_attention = get_attention_mode(args.attention, installed_attn_modes)
offload.shared_state["_attention"] = chosen_attention
# Determine i2v resolution format
if "720" in args.transformer_file:
is_720p = True
else:
is_720p = False
# Make sure we have the needed models locally
download_models_if_needed(args.transformer_file, args.text_encoder_file)
# Load i2v
wan_model, pipe = load_i2v_model(
model_filename=args.transformer_file,
text_encoder_filename=args.text_encoder_file,
is_720p=is_720p
)
wan_model._interrupt = False
# Offload / profile
# e.g. for your script: offload.profile(pipe, profile_no=args.profile, compile=..., quantizeTransformer=...)
# pass the budgets if you want, etc.
kwargs = {}
if args.profile == 2 or args.profile == 4:
# preload is in MB
if args.preload == 0:
budgets = {"transformer": 100, "text_encoder": 100, "*": 1000}
else:
budgets = {"transformer": args.preload, "text_encoder": 100, "*": 1000}
kwargs["budgets"] = budgets
elif args.profile == 3:
kwargs["budgets"] = {"*": "70%"}
compile_choice = "transformer" if args.compile else ""
# Create the offload object
offloadobj = offload.profile(
pipe,
profile_no=args.profile,
compile=compile_choice,
quantizeTransformer=args.quantize_transformer,
**kwargs
)
# If user wants to use LoRAs
(
loras,
loras_names,
default_loras_choices,
default_loras_multis_str,
preset_prompt_prefix,
preset_full_prompt
) = setup_loras(pipe, args.lora_dir, args.lora_preset, args.steps)
# Combine user prompt with preset prompt if the preset indicates so
if preset_prompt_prefix:
if preset_full_prompt:
# Full override
user_prompt = preset_prompt_prefix
else:
# Just prefix
user_prompt = preset_prompt_prefix + "\n" + args.prompt
else:
user_prompt = args.prompt
# Actually parse user LoRA choices if they did not rely purely on the preset
if args.loras_choices:
# If user gave e.g. "0,1", we treat that as new additions
lora_choice_list = [x.strip() for x in args.loras_choices.split(",")]
else:
# Use the defaults from the preset
lora_choice_list = default_loras_choices
# Activate them
parse_loras_and_activate(
pipe["transformer"], loras, lora_choice_list, args.loras_mult or default_loras_multis_str, args.steps
)
# Negative prompt
negative_prompt = args.negative_prompt or ""
# Sanity check resolution
if "*" in args.resolution.lower():
print("ERROR: resolution must be e.g. 832x480 not '832*480'. Fixing it.")
resolution_str = args.resolution.lower().replace("*", "x")
else:
resolution_str = args.resolution
try:
width, height = [int(x) for x in resolution_str.split("x")]
except:
raise ValueError(f"Invalid resolution: '{resolution_str}'")
# Parse slg_layers from comma-separated string to a Python list of ints (or None if not provided)
if args.slg_layers:
slg_list = [int(x) for x in args.slg_layers.split(",")]
else:
slg_list = None
# Additional checks (from your original code).
if "480p" in args.transformer_file:
# Then we cannot exceed certain area for 480p model
if width * height > 832*480:
raise ValueError("You must use the 720p i2v model to generate bigger than 832x480.")
# etc.
# Handle random seed
if args.seed < 0:
args.seed = random.randint(0, 999999999)
print(f"Using seed={args.seed}")
# Setup tea cache if needed
trans = wan_model.model
trans.enable_cache = (args.teacache > 0)
if trans.enable_cache:
if "480p" in args.transformer_file:
# example from your code
trans.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
elif "720p" in args.transformer_file:
trans.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
else:
raise ValueError("Teacache not supported for this model variant")
# Attempt generation
print("Starting generation ...")
start_time = time.time()
# Read the input image
if not os.path.isfile(args.input_image):
raise ValueError(f"Input image does not exist: {args.input_image}")
from PIL import Image
input_img = Image.open(args.input_image).convert("RGB")
# Possibly load more than one image if you want "multiple images" – but here we'll just do single for demonstration
# Define the generation call
# - frames => must be multiple of 4 plus 1 as per original script's note, e.g. 81, 65, ...
# You can correct to that if needed:
frame_count = (args.frames // 4)*4 + 1 # ensures it's 4*N+1
# RIFLEx
enable_riflex = args.riflex
# If teacache => reset counters
if trans.enable_cache:
trans.teacache_counter = 0
trans.teacache_multiplier = args.teacache
trans.cache_start_step = int(args.teacache_start * args.steps / 100.0)
trans.num_steps = args.steps
trans.teacache_skipped_steps = 0
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
# VAE Tiling
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
if device_mem_capacity >= 28000: # 81 frames 720p requires about 28 GB VRAM
use_vae_config = 1
elif device_mem_capacity >= 8000:
use_vae_config = 2
else:
use_vae_config = 3
if use_vae_config == 1:
VAE_tile_size = 0
elif use_vae_config == 2:
VAE_tile_size = 256
else:
VAE_tile_size = 128
print('Using VAE tile size of', VAE_tile_size)
# Actually run the i2v generation
try:
sample_frames = wan_model.generate(
input_prompt = user_prompt,
image_start = input_img,
frame_num=frame_count,
width=width,
height=height,
# max_area=MAX_AREA_CONFIGS[f"{width}*{height}"], # or you can pass your custom
shift=args.flow_shift,
sampling_steps=args.steps,
guide_scale=args.guidance_scale,
n_prompt=negative_prompt,
seed=args.seed,
offload_model=False,
callback=None, # or define your own callback if you want
enable_RIFLEx=enable_riflex,
VAE_tile_size=VAE_tile_size,
joint_pass=slg_list is None, # set if you want a small speed improvement without SLG
slg_layers=slg_list,
slg_start=args.slg_start,
slg_end=args.slg_end,
)
except Exception as e:
offloadobj.unload_all()
gc.collect()
torch.cuda.empty_cache()
err_str = f"Generation failed with error: {e}"
# Attempt to detect OOM errors
s = str(e).lower()
if any(keyword in s for keyword in ["memory", "cuda", "alloc"]):
raise RuntimeError("Likely out-of-VRAM or out-of-RAM error. " + err_str)
else:
traceback.print_exc()
raise RuntimeError(err_str)
# After generation
offloadobj.unload_all()
gc.collect()
torch.cuda.empty_cache()
if sample_frames is None:
raise RuntimeError("No frames were returned (maybe generation was aborted or failed).")
# If teacache was used, we can see how many steps were skipped
if trans.enable_cache:
print(f"TeaCache skipped steps: {trans.teacache_skipped_steps} / {args.steps}")
# Save result
sample_frames = sample_frames.cpu() # shape = c, t, h, w => [3, T, H, W]
os.makedirs(os.path.dirname(args.output_file) or ".", exist_ok=True)
# Use the provided helper from your code to store the MP4
# By default, you used cache_video(tensor=..., save_file=..., fps=16, ...)
# or you can do your own. We'll do the same for consistency:
cache_video(
tensor=sample_frames[None], # shape => [1, c, T, H, W]
save_file=args.output_file,
fps=16,
nrow=1,
normalize=True,
value_range=(-1, 1)
)
end_time = time.time()
elapsed_s = end_time - start_time
print(f"Done! Output written to {args.output_file}. Generation time: {elapsed_s:.1f} seconds.")
if __name__ == "__main__":
main()