File size: 24,200 Bytes
78360e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
import os
import time
import argparse
import json
import torch
import traceback
import gc
import random
# These imports rely on your existing code structure
# They must match the location of your WAN code, etc.
import wan
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS
from wan.modules.attention import get_attention_modes
from wan.utils.utils import cache_video
from mmgp import offload, safetensors2, profile_type
try:
import triton
except ImportError:
pass
DATA_DIR = "ckpts"
# --------------------------------------------------
# HELPER FUNCTIONS
# --------------------------------------------------
def sanitize_file_name(file_name):
"""Clean up file name from special chars."""
return (
file_name.replace("/", "")
.replace("\\", "")
.replace(":", "")
.replace("|", "")
.replace("?", "")
.replace("<", "")
.replace(">", "")
.replace('"', "")
)
def extract_preset(lset_name, lora_dir, loras):
"""
Load a .lset JSON that lists the LoRA files to apply, plus multipliers
and possibly a suggested prompt prefix.
"""
lset_name = sanitize_file_name(lset_name)
if not lset_name.endswith(".lset"):
lset_name_filename = os.path.join(lora_dir, lset_name + ".lset")
else:
lset_name_filename = os.path.join(lora_dir, lset_name)
if not os.path.isfile(lset_name_filename):
raise ValueError(f"Preset '{lset_name}' not found in {lora_dir}")
with open(lset_name_filename, "r", encoding="utf-8") as reader:
text = reader.read()
lset = json.loads(text)
loras_choices_files = lset["loras"]
loras_choices = []
missing_loras = []
for lora_file in loras_choices_files:
# Build absolute path and see if it is in loras
full_lora_path = os.path.join(lora_dir, lora_file)
if full_lora_path in loras:
idx = loras.index(full_lora_path)
loras_choices.append(str(idx))
else:
missing_loras.append(lora_file)
if len(missing_loras) > 0:
missing_list = ", ".join(missing_loras)
raise ValueError(f"Missing LoRA files for preset: {missing_list}")
loras_mult_choices = lset["loras_mult"]
prompt_prefix = lset.get("prompt", "")
full_prompt = lset.get("full_prompt", False)
return loras_choices, loras_mult_choices, prompt_prefix, full_prompt
def get_attention_mode(args_attention, installed_modes):
"""
Decide which attention mode to use: either the user choice or auto fallback.
"""
if args_attention == "auto":
for candidate in ["sage2", "sage", "sdpa"]:
if candidate in installed_modes:
return candidate
return "sdpa" # last fallback
elif args_attention in installed_modes:
return args_attention
else:
raise ValueError(
f"Requested attention mode '{args_attention}' not installed. "
f"Installed modes: {installed_modes}"
)
def load_i2v_model(model_filename, text_encoder_filename, is_720p):
"""
Load the i2v model with a specific size config and text encoder.
"""
if is_720p:
print("Loading 14B-720p i2v model ...")
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir=DATA_DIR,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename
)
else:
print("Loading 14B-480p i2v model ...")
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir=DATA_DIR,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename
)
# Pipe structure
pipe = {
"transformer": wan_model.model,
"text_encoder": wan_model.text_encoder.model,
"text_encoder_2": wan_model.clip.model,
"vae": wan_model.vae.model
}
return wan_model, pipe
def setup_loras(pipe, lora_dir, lora_preset, num_inference_steps):
"""
Load loras from a directory, optionally apply a preset.
"""
from pathlib import Path
import glob
if not lora_dir or not Path(lora_dir).is_dir():
print("No valid --lora-dir provided or directory doesn't exist, skipping LoRA setup.")
return [], [], [], "", "", False
# Gather LoRA files
loras = sorted(
glob.glob(os.path.join(lora_dir, "*.sft"))
+ glob.glob(os.path.join(lora_dir, "*.safetensors"))
)
loras_names = [Path(x).stem for x in loras]
# Offload them with no activation
offload.load_loras_into_model(pipe["transformer"], loras, activate_all_loras=False)
# If user gave a preset, apply it
default_loras_choices = []
default_loras_multis_str = ""
default_prompt_prefix = ""
preset_applied_full_prompt = False
if lora_preset:
loras_choices, loras_mult, prefix, full_prompt = extract_preset(lora_preset, lora_dir, loras)
default_loras_choices = loras_choices
# If user stored loras_mult as a list or string in JSON, unify that to str
if isinstance(loras_mult, list):
# Just store them in a single line
default_loras_multis_str = " ".join([str(x) for x in loras_mult])
else:
default_loras_multis_str = str(loras_mult)
default_prompt_prefix = prefix
preset_applied_full_prompt = full_prompt
return (
loras,
loras_names,
default_loras_choices,
default_loras_multis_str,
default_prompt_prefix,
preset_applied_full_prompt
)
def parse_loras_and_activate(
transformer,
loras,
loras_choices,
loras_mult_str,
num_inference_steps
):
"""
Activate the chosen LoRAs with multipliers over the pipeline's transformer.
Supports stepwise expansions (like "0.5,0.8" for partial steps).
"""
if not loras or not loras_choices:
# no LoRAs selected
return
# Handle multipliers
def is_float_or_comma_list(x):
"""
Example: "0.5", or "0.8,1.0", etc. is valid.
"""
if not x:
return False
for chunk in x.split(","):
try:
float(chunk.strip())
except ValueError:
return False
return True
# Convert multiline or spaced lines to a single list
lines = [
line.strip()
for line in loras_mult_str.replace("\r", "\n").split("\n")
if line.strip() and not line.strip().startswith("#")
]
# Now combine them by space
joined_line = " ".join(lines) # "1.0 2.0,3.0"
if not joined_line.strip():
multipliers = []
else:
multipliers = joined_line.split(" ")
# Expand each item
final_multipliers = []
for mult in multipliers:
mult = mult.strip()
if not mult:
continue
if is_float_or_comma_list(mult):
# Could be "0.7" or "0.5,0.6"
if "," in mult:
# expand over steps
chunk_vals = [float(x.strip()) for x in mult.split(",")]
expanded = expand_list_over_steps(chunk_vals, num_inference_steps)
final_multipliers.append(expanded)
else:
final_multipliers.append(float(mult))
else:
raise ValueError(f"Invalid LoRA multiplier: '{mult}'")
# If fewer multipliers than chosen LoRAs => pad with 1.0
needed = len(loras_choices) - len(final_multipliers)
if needed > 0:
final_multipliers += [1.0]*needed
# Actually activate them
offload.activate_loras(transformer, loras_choices, final_multipliers)
def expand_list_over_steps(short_list, num_steps):
"""
If user gave (0.5, 0.8) for example, expand them over `num_steps`.
The expansion is simply linear slice across steps.
"""
result = []
inc = len(short_list) / float(num_steps)
idxf = 0.0
for _ in range(num_steps):
value = short_list[int(idxf)]
result.append(value)
idxf += inc
return result
def download_models_if_needed(transformer_filename_i2v, text_encoder_filename, local_folder=DATA_DIR):
"""
Checks if all required WAN 2.1 i2v files exist locally under 'ckpts/'.
If not, downloads them from a Hugging Face Hub repo.
Adjust the 'repo_id' and needed files as appropriate.
"""
import os
from pathlib import Path
try:
from huggingface_hub import hf_hub_download, snapshot_download
except ImportError as e:
raise ImportError(
"huggingface_hub is required for automatic model download. "
"Please install it via `pip install huggingface_hub`."
) from e
# Identify just the filename portion for each path
def basename(path_str):
return os.path.basename(path_str)
repo_id = "DeepBeepMeep/Wan2.1"
target_root = local_folder
# You can customize this list as needed for i2v usage.
# At minimum you need:
# 1) The requested i2v transformer file
# 2) The requested text encoder file
# 3) VAE file
# 4) The open-clip xlm-roberta-large weights
#
# If your i2v config references additional files, add them here.
needed_files = [
"Wan2.1_VAE.pth",
"models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
basename(text_encoder_filename),
basename(transformer_filename_i2v),
]
# The original script also downloads an entire "xlm-roberta-large" folder
# via snapshot_download. If you require that for your pipeline,
# you can add it here, for example:
subfolder_name = "xlm-roberta-large"
if not Path(os.path.join(target_root, subfolder_name)).exists():
snapshot_download(repo_id=repo_id, allow_patterns=subfolder_name + "/*", local_dir=target_root)
for filename in needed_files:
local_path = os.path.join(target_root, filename)
if not os.path.isfile(local_path):
print(f"File '{filename}' not found locally. Downloading from {repo_id} ...")
hf_hub_download(
repo_id=repo_id,
filename=filename,
local_dir=target_root
)
else:
# Already present
pass
print("All required i2v files are present.")
# --------------------------------------------------
# ARGUMENT PARSER
# --------------------------------------------------
def parse_args():
parser = argparse.ArgumentParser(
description="Image-to-Video inference using WAN 2.1 i2v"
)
# Model + Tools
parser.add_argument(
"--quantize-transformer",
action="store_true",
help="Use on-the-fly transformer quantization"
)
parser.add_argument(
"--compile",
action="store_true",
help="Enable PyTorch 2.0 compile for the transformer"
)
parser.add_argument(
"--attention",
type=str,
default="auto",
help="Which attention to use: auto, sdpa, sage, sage2, flash"
)
parser.add_argument(
"--profile",
type=int,
default=4,
help="Memory usage profile number [1..5]; see original script or use 2 if you have low VRAM"
)
parser.add_argument(
"--preload",
type=int,
default=0,
help="Megabytes of the diffusion model to preload in VRAM (only used in some profiles)"
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="Verbosity level [0..5]"
)
# i2v Model
parser.add_argument(
"--transformer-file",
type=str,
default=f"{DATA_DIR}/wan2.1_image2video_480p_14B_quanto_int8.safetensors",
help="Which i2v model to load"
)
parser.add_argument(
"--text-encoder-file",
type=str,
default=f"{DATA_DIR}/models_t5_umt5-xxl-enc-quanto_int8.safetensors",
help="Which text encoder to use"
)
# LoRA
parser.add_argument(
"--lora-dir",
type=str,
default="",
help="Path to a directory containing i2v LoRAs"
)
parser.add_argument(
"--lora-preset",
type=str,
default="",
help="A .lset preset name in the lora_dir to auto-apply"
)
# Generation Options
parser.add_argument("--prompt", type=str, default=None, required=True, help="Prompt for generation")
parser.add_argument("--negative-prompt", type=str, default="", help="Negative prompt")
parser.add_argument("--resolution", type=str, default="832x480", help="WxH")
parser.add_argument("--frames", type=int, default=64, help="Number of frames (16=1s if fps=16). Must be multiple of 4 +/- 1 in WAN.")
parser.add_argument("--steps", type=int, default=30, help="Number of denoising steps.")
parser.add_argument("--guidance-scale", type=float, default=5.0, help="Classifier-free guidance scale")
parser.add_argument("--flow-shift", type=float, default=3.0, help="Flow shift parameter. Generally 3.0 for 480p, 5.0 for 720p.")
parser.add_argument("--riflex", action="store_true", help="Enable RIFLEx for longer videos")
parser.add_argument("--teacache", type=float, default=0.25, help="TeaCache multiplier, e.g. 0.5, 2.0, etc.")
parser.add_argument("--teacache-start", type=float, default=0.1, help="Teacache start step percentage [0..100]")
parser.add_argument("--seed", type=int, default=-1, help="Random seed. -1 means random each time.")
parser.add_argument("--slg-layers", type=str, default=None, help="Which layers to use for skip layer guidance")
parser.add_argument("--slg-start", type=float, default=0.0, help="Percentage in to start SLG")
parser.add_argument("--slg-end", type=float, default=1.0, help="Percentage in to end SLG")
# LoRA usage
parser.add_argument("--loras-choices", type=str, default="", help="Comma-separated list of chosen LoRA indices or preset names to load. Usually you only use the preset.")
parser.add_argument("--loras-mult", type=str, default="", help="Multipliers for each chosen LoRA. Example: '1.0 1.2,1.3' etc.")
# Input
parser.add_argument(
"--input-image",
type=str,
default=None,
required=True,
help="Path to an input image (or multiple)."
)
parser.add_argument(
"--output-file",
type=str,
default="output.mp4",
help="Where to save the resulting video."
)
return parser.parse_args()
# --------------------------------------------------
# MAIN
# --------------------------------------------------
def main():
args = parse_args()
# Setup environment
offload.default_verboseLevel = args.verbose
installed_attn_modes = get_attention_modes()
# Decide attention
chosen_attention = get_attention_mode(args.attention, installed_attn_modes)
offload.shared_state["_attention"] = chosen_attention
# Determine i2v resolution format
if "720" in args.transformer_file:
is_720p = True
else:
is_720p = False
# Make sure we have the needed models locally
download_models_if_needed(args.transformer_file, args.text_encoder_file)
# Load i2v
wan_model, pipe = load_i2v_model(
model_filename=args.transformer_file,
text_encoder_filename=args.text_encoder_file,
is_720p=is_720p
)
wan_model._interrupt = False
# Offload / profile
# e.g. for your script: offload.profile(pipe, profile_no=args.profile, compile=..., quantizeTransformer=...)
# pass the budgets if you want, etc.
kwargs = {}
if args.profile == 2 or args.profile == 4:
# preload is in MB
if args.preload == 0:
budgets = {"transformer": 100, "text_encoder": 100, "*": 1000}
else:
budgets = {"transformer": args.preload, "text_encoder": 100, "*": 1000}
kwargs["budgets"] = budgets
elif args.profile == 3:
kwargs["budgets"] = {"*": "70%"}
compile_choice = "transformer" if args.compile else ""
# Create the offload object
offloadobj = offload.profile(
pipe,
profile_no=args.profile,
compile=compile_choice,
quantizeTransformer=args.quantize_transformer,
**kwargs
)
# If user wants to use LoRAs
(
loras,
loras_names,
default_loras_choices,
default_loras_multis_str,
preset_prompt_prefix,
preset_full_prompt
) = setup_loras(pipe, args.lora_dir, args.lora_preset, args.steps)
# Combine user prompt with preset prompt if the preset indicates so
if preset_prompt_prefix:
if preset_full_prompt:
# Full override
user_prompt = preset_prompt_prefix
else:
# Just prefix
user_prompt = preset_prompt_prefix + "\n" + args.prompt
else:
user_prompt = args.prompt
# Actually parse user LoRA choices if they did not rely purely on the preset
if args.loras_choices:
# If user gave e.g. "0,1", we treat that as new additions
lora_choice_list = [x.strip() for x in args.loras_choices.split(",")]
else:
# Use the defaults from the preset
lora_choice_list = default_loras_choices
# Activate them
parse_loras_and_activate(
pipe["transformer"], loras, lora_choice_list, args.loras_mult or default_loras_multis_str, args.steps
)
# Negative prompt
negative_prompt = args.negative_prompt or ""
# Sanity check resolution
if "*" in args.resolution.lower():
print("ERROR: resolution must be e.g. 832x480 not '832*480'. Fixing it.")
resolution_str = args.resolution.lower().replace("*", "x")
else:
resolution_str = args.resolution
try:
width, height = [int(x) for x in resolution_str.split("x")]
except:
raise ValueError(f"Invalid resolution: '{resolution_str}'")
# Parse slg_layers from comma-separated string to a Python list of ints (or None if not provided)
if args.slg_layers:
slg_list = [int(x) for x in args.slg_layers.split(",")]
else:
slg_list = None
# Additional checks (from your original code).
if "480p" in args.transformer_file:
# Then we cannot exceed certain area for 480p model
if width * height > 832*480:
raise ValueError("You must use the 720p i2v model to generate bigger than 832x480.")
# etc.
# Handle random seed
if args.seed < 0:
args.seed = random.randint(0, 999999999)
print(f"Using seed={args.seed}")
# Setup tea cache if needed
trans = wan_model.model
trans.enable_cache = (args.teacache > 0)
if trans.enable_cache:
if "480p" in args.transformer_file:
# example from your code
trans.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
elif "720p" in args.transformer_file:
trans.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
else:
raise ValueError("Teacache not supported for this model variant")
# Attempt generation
print("Starting generation ...")
start_time = time.time()
# Read the input image
if not os.path.isfile(args.input_image):
raise ValueError(f"Input image does not exist: {args.input_image}")
from PIL import Image
input_img = Image.open(args.input_image).convert("RGB")
# Possibly load more than one image if you want "multiple images" – but here we'll just do single for demonstration
# Define the generation call
# - frames => must be multiple of 4 plus 1 as per original script's note, e.g. 81, 65, ...
# You can correct to that if needed:
frame_count = (args.frames // 4)*4 + 1 # ensures it's 4*N+1
# RIFLEx
enable_riflex = args.riflex
# If teacache => reset counters
if trans.enable_cache:
trans.teacache_counter = 0
trans.teacache_multiplier = args.teacache
trans.cache_start_step = int(args.teacache_start * args.steps / 100.0)
trans.num_steps = args.steps
trans.teacache_skipped_steps = 0
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
# VAE Tiling
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
if device_mem_capacity >= 28000: # 81 frames 720p requires about 28 GB VRAM
use_vae_config = 1
elif device_mem_capacity >= 8000:
use_vae_config = 2
else:
use_vae_config = 3
if use_vae_config == 1:
VAE_tile_size = 0
elif use_vae_config == 2:
VAE_tile_size = 256
else:
VAE_tile_size = 128
print('Using VAE tile size of', VAE_tile_size)
# Actually run the i2v generation
try:
sample_frames = wan_model.generate(
input_prompt = user_prompt,
image_start = input_img,
frame_num=frame_count,
width=width,
height=height,
# max_area=MAX_AREA_CONFIGS[f"{width}*{height}"], # or you can pass your custom
shift=args.flow_shift,
sampling_steps=args.steps,
guide_scale=args.guidance_scale,
n_prompt=negative_prompt,
seed=args.seed,
offload_model=False,
callback=None, # or define your own callback if you want
enable_RIFLEx=enable_riflex,
VAE_tile_size=VAE_tile_size,
joint_pass=slg_list is None, # set if you want a small speed improvement without SLG
slg_layers=slg_list,
slg_start=args.slg_start,
slg_end=args.slg_end,
)
except Exception as e:
offloadobj.unload_all()
gc.collect()
torch.cuda.empty_cache()
err_str = f"Generation failed with error: {e}"
# Attempt to detect OOM errors
s = str(e).lower()
if any(keyword in s for keyword in ["memory", "cuda", "alloc"]):
raise RuntimeError("Likely out-of-VRAM or out-of-RAM error. " + err_str)
else:
traceback.print_exc()
raise RuntimeError(err_str)
# After generation
offloadobj.unload_all()
gc.collect()
torch.cuda.empty_cache()
if sample_frames is None:
raise RuntimeError("No frames were returned (maybe generation was aborted or failed).")
# If teacache was used, we can see how many steps were skipped
if trans.enable_cache:
print(f"TeaCache skipped steps: {trans.teacache_skipped_steps} / {args.steps}")
# Save result
sample_frames = sample_frames.cpu() # shape = c, t, h, w => [3, T, H, W]
os.makedirs(os.path.dirname(args.output_file) or ".", exist_ok=True)
# Use the provided helper from your code to store the MP4
# By default, you used cache_video(tensor=..., save_file=..., fps=16, ...)
# or you can do your own. We'll do the same for consistency:
cache_video(
tensor=sample_frames[None], # shape => [1, c, T, H, W]
save_file=args.output_file,
fps=16,
nrow=1,
normalize=True,
value_range=(-1, 1)
)
end_time = time.time()
elapsed_s = end_time - start_time
print(f"Done! Output written to {args.output_file}. Generation time: {elapsed_s:.1f} seconds.")
if __name__ == "__main__":
main()
|