A newer version of the Gradio SDK is available:
5.34.2
Installation Guide
This guide covers installation for different GPU generations and operating systems.
Requirements
- Python 3.10.9
- Conda or Python venv
- Compatible GPU (RTX 10XX or newer recommended)
Installation for RTX 10XX to RTX 40XX (Stable)
This installation uses PyTorch 2.6.0 which is well-tested and stable.
Step 1: Download and Setup Environment
# Clone the repository
git clone https://github.com/deepbeepmeep/Wan2GP.git
cd Wan2GP
# Create Python 3.10.9 environment using conda
conda create -n wan2gp python=3.10.9
conda activate wan2gp
Step 2: Install PyTorch
# Install PyTorch 2.6.0 with CUDA 12.4
pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu124
Step 3: Install Dependencies
# Install core dependencies
pip install -r requirements.txt
Step 4: Optional Performance Optimizations
Sage Attention (30% faster)
# Windows only: Install Triton
pip install triton-windows
# For both Windows and Linux
pip install sageattention==1.0.6
Sage 2 Attention (40% faster)
# Windows
pip install triton-windows
pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu126torch2.6.0-cp310-cp310-win_amd64.whl
# Linux (manual compilation required)
git clone https://github.com/thu-ml/SageAttention
cd SageAttention
pip install -e .
Flash Attention
# May require CUDA kernel compilation on Windows
pip install flash-attn==2.7.2.post1
Installation for RTX 50XX (Beta)
RTX 50XX GPUs require PyTorch 2.7.0 (beta). This version may be less stable.
⚠️ Important: Use Python 3.10 for compatibility with pip wheels.
Step 1: Setup Environment
# Clone and setup (same as above)
git clone https://github.com/deepbeepmeep/Wan2GP.git
cd Wan2GP
conda create -n wan2gp python=3.10.9
conda activate wan2gp
Step 2: Install PyTorch Beta
# Install PyTorch 2.7.0 with CUDA 12.8
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128
Step 3: Install Dependencies
pip install -r requirements.txt
Step 4: Optional Optimizations for RTX 50XX
Sage Attention
# Windows
pip install triton-windows
pip install sageattention==1.0.6
# Linux
pip install sageattention==1.0.6
Sage 2 Attention
# Windows
pip install triton-windows
pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu128torch2.7.0-cp310-cp310-win_amd64.whl
# Linux (manual compilation)
git clone https://github.com/thu-ml/SageAttention
cd SageAttention
pip install -e .
Attention Modes
WanGP supports several attention implementations:
- SDPA (default): Available by default with PyTorch
- Sage: 30% speed boost with small quality cost
- Sage2: 40% speed boost
- Flash: Good performance, may be complex to install on Windows
Performance Profiles
Choose a profile based on your hardware:
- Profile 3 (LowRAM_HighVRAM): Loads entire model in VRAM, requires 24GB VRAM for 8-bit quantized 14B model
- Profile 4 (LowRAM_LowVRAM): Default, loads model parts as needed, slower but lower VRAM requirement
Troubleshooting
Sage Attention Issues
If Sage attention doesn't work:
- Check if Triton is properly installed
- Clear Triton cache
- Fallback to SDPA attention:
python wgp.py --attention sdpa
Memory Issues
- Use lower resolution or shorter videos
- Enable quantization (default)
- Use Profile 4 for lower VRAM usage
- Consider using 1.3B models instead of 14B models
GPU Compatibility
- RTX 10XX, 20XX: Supported with SDPA attention
- RTX 30XX, 40XX: Full feature support
- RTX 50XX: Beta support with PyTorch 2.7.0
For more troubleshooting, see TROUBLESHOOTING.md