|
--vace-1-3B--vace-1-3B# Command Line Reference
|
|
|
|
This document covers all available command line options for WanGP.
|
|
|
|
## Basic Usage
|
|
|
|
```bash
|
|
# Default launch
|
|
python wgp.py
|
|
|
|
# Specific model modes
|
|
python wgp.py --i2v # Image-to-video
|
|
python wgp.py --t2v # Text-to-video (default)
|
|
python wgp.py --t2v-14B # 14B text-to-video model
|
|
python wgp.py --t2v-1-3B # 1.3B text-to-video model
|
|
python wgp.py --i2v-14B # 14B image-to-video model
|
|
python wgp.py --i2v-1-3B # Fun InP 1.3B image-to-video model
|
|
python wgp.py --vace-1-3B # VACE ControlNet 1.3B model
|
|
```
|
|
|
|
## Model and Performance Options
|
|
|
|
### Model Configuration
|
|
```bash
|
|
--quantize-transformer BOOL # Enable/disable transformer quantization (default: True)
|
|
--compile # Enable PyTorch compilation (requires Triton)
|
|
--attention MODE # Force attention mode: sdpa, flash, sage, sage2
|
|
--profile NUMBER # Performance profile 1-5 (default: 4)
|
|
--preload NUMBER # Preload N MB of diffusion model in VRAM
|
|
--fp16 # Force fp16 instead of bf16 models
|
|
--gpu DEVICE # Run on specific GPU device (e.g., "cuda:1")
|
|
```
|
|
|
|
### Performance Profiles
|
|
- **Profile 1**: Load entire current model in VRAM and keep all unused models in reserved RAM for fast VRAM tranfers
|
|
- **Profile 2**: Load model parts as needed, keep all unused models in reserved RAM for fast VRAM tranfers
|
|
- **Profile 3**: Load entire current model in VRAM (requires 24GB for 14B model)
|
|
- **Profile 4**: Default and recommended, load model parts as needed, most flexible option
|
|
- **Profile 5**: Minimum RAM usage
|
|
|
|
### Memory Management
|
|
```bash
|
|
--perc-reserved-mem-max FLOAT # Max percentage of RAM for reserved memory (< 0.5)
|
|
```
|
|
|
|
## Lora Configuration
|
|
|
|
```bash
|
|
--lora-dir PATH # Path to Wan t2v loras directory
|
|
--lora-dir-i2v PATH # Path to Wan i2v loras directory
|
|
--lora-dir-hunyuan PATH # Path to Hunyuan t2v loras directory
|
|
--lora-dir-hunyuan-i2v PATH # Path to Hunyuan i2v loras directory
|
|
--lora-dir-ltxv PATH # Path to LTX Video loras directory
|
|
--lora-preset PRESET # Load lora preset file (.lset) on startup
|
|
--check-loras # Filter incompatible loras (slower startup)
|
|
```
|
|
|
|
## Generation Settings
|
|
|
|
### Basic Generation
|
|
```bash
|
|
--seed NUMBER # Set default seed value
|
|
--frames NUMBER # Set default number of frames to generate
|
|
--steps NUMBER # Set default number of denoising steps
|
|
--advanced # Launch with advanced mode enabled
|
|
```
|
|
|
|
### Advanced Generation
|
|
```bash
|
|
--teacache MULTIPLIER # TeaCache speed multiplier: 0, 1.5, 1.75, 2.0, 2.25, 2.5
|
|
```
|
|
|
|
## Interface and Server Options
|
|
|
|
### Server Configuration
|
|
```bash
|
|
--server-port PORT # Gradio server port (default: 7860)
|
|
--server-name NAME # Gradio server name (default: localhost)
|
|
--listen # Make server accessible on network
|
|
--share # Create shareable HuggingFace URL for remote access
|
|
--open-browser # Open browser automatically when launching
|
|
```
|
|
|
|
### Interface Options
|
|
```bash
|
|
--lock-config # Prevent modifying video engine configuration from interface
|
|
--theme THEME_NAME # UI theme: "default" or "gradio"
|
|
```
|
|
|
|
## File and Directory Options
|
|
|
|
```bash
|
|
--settings PATH # Path to folder containing default settings for all models
|
|
--verbose LEVEL # Information level 0-2 (default: 1)
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Basic Usage Examples
|
|
```bash
|
|
# Launch with specific model and loras
|
|
python wgp.py --t2v-14B --lora-preset mystyle.lset
|
|
|
|
# High-performance setup with compilation
|
|
python wgp.py --compile --attention sage2 --profile 3
|
|
|
|
# Low VRAM setup
|
|
python wgp.py --t2v-1-3B --profile 4 --attention sdpa
|
|
|
|
# Multiple images with custom lora directory
|
|
python wgp.py --i2v --multiple-images --lora-dir /path/to/shared/loras
|
|
```
|
|
|
|
### Server Configuration Examples
|
|
```bash
|
|
# Network accessible server
|
|
python wgp.py --listen --server-port 8080
|
|
|
|
# Shareable server with custom theme
|
|
python wgp.py --share --theme gradio --open-browser
|
|
|
|
# Locked configuration for public use
|
|
python wgp.py --lock-config --share
|
|
```
|
|
|
|
### Advanced Performance Examples
|
|
```bash
|
|
# Maximum performance (requires high-end GPU)
|
|
python wgp.py --compile --attention sage2 --profile 3 --preload 2000
|
|
|
|
# Optimized for RTX 2080Ti
|
|
python wgp.py --profile 4 --attention sdpa --teacache 2.0
|
|
|
|
# Memory-efficient setup
|
|
python wgp.py --fp16 --profile 4 --perc-reserved-mem-max 0.3
|
|
```
|
|
|
|
### TeaCache Configuration
|
|
```bash
|
|
# Different speed multipliers
|
|
python wgp.py --teacache 1.5 # 1.5x speed, minimal quality loss
|
|
python wgp.py --teacache 2.0 # 2x speed, some quality loss
|
|
python wgp.py --teacache 2.5 # 2.5x speed, noticeable quality loss
|
|
python wgp.py --teacache 0 # Disable TeaCache
|
|
```
|
|
|
|
## Attention Modes
|
|
|
|
### SDPA (Default)
|
|
```bash
|
|
python wgp.py --attention sdpa
|
|
```
|
|
- Available by default with PyTorch
|
|
- Good compatibility with all GPUs
|
|
- Moderate performance
|
|
|
|
### Sage Attention
|
|
```bash
|
|
python wgp.py --attention sage
|
|
```
|
|
- Requires Triton installation
|
|
- 30% faster than SDPA
|
|
- Small quality cost
|
|
|
|
### Sage2 Attention
|
|
```bash
|
|
python wgp.py --attention sage2
|
|
```
|
|
- Requires Triton and SageAttention 2.x
|
|
- 40% faster than SDPA
|
|
- Best performance option
|
|
|
|
### Flash Attention
|
|
```bash
|
|
python wgp.py --attention flash
|
|
```
|
|
- May require CUDA kernel compilation
|
|
- Good performance
|
|
- Can be complex to install on Windows
|
|
|
|
## Troubleshooting Command Lines
|
|
|
|
### Fallback to Basic Setup
|
|
```bash
|
|
# If advanced features don't work
|
|
python wgp.py --attention sdpa --profile 4 --fp16
|
|
```
|
|
|
|
### Debug Mode
|
|
```bash
|
|
# Maximum verbosity for troubleshooting
|
|
python wgp.py --verbose 2 --check-loras
|
|
```
|
|
|
|
### Memory Issue Debugging
|
|
```bash
|
|
# Minimal memory usage
|
|
python wgp.py --profile 4 --attention sdpa --perc-reserved-mem-max 0.2
|
|
```
|
|
|
|
|
|
|
|
## Configuration Files
|
|
|
|
### Settings Files
|
|
Load custom settings:
|
|
```bash
|
|
python wgp.py --settings /path/to/settings/folder
|
|
```
|
|
|
|
### Lora Presets
|
|
Create and share lora configurations:
|
|
```bash
|
|
# Load specific preset
|
|
python wgp.py --lora-preset anime_style.lset
|
|
|
|
# With custom lora directory
|
|
python wgp.py --lora-preset mystyle.lset --lora-dir /shared/loras
|
|
```
|
|
|
|
## Environment Variables
|
|
|
|
While not command line options, these environment variables can affect behavior:
|
|
- `CUDA_VISIBLE_DEVICES` - Limit visible GPUs
|
|
- `PYTORCH_CUDA_ALLOC_CONF` - CUDA memory allocation settings
|
|
- `TRITON_CACHE_DIR` - Triton cache directory (for Sage attention) |