|
import os |
|
import sys |
|
import json |
|
from pathlib import Path |
|
import tempfile |
|
import shutil |
|
|
|
|
|
try: |
|
import gradio as gr |
|
except ImportError: |
|
print("Installing gradio...") |
|
os.system(f"{sys.executable} -m pip install gradio") |
|
import gradio as gr |
|
|
|
try: |
|
import subprocess |
|
except ImportError: |
|
subprocess = None |
|
|
|
try: |
|
import torch |
|
HAS_TORCH = True |
|
except ImportError: |
|
HAS_TORCH = False |
|
print("PyTorch not available, using CPU mode") |
|
|
|
|
|
TEMP_DIR = tempfile.gettempdir() |
|
HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache") |
|
os.makedirs(HF_CACHE_DIR, exist_ok=True) |
|
|
|
|
|
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" |
|
os.environ["GRADIO_SERVER_PORT"] = "7860" |
|
os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR |
|
os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" |
|
|
|
def safe_import(module_name, package_name=None): |
|
"""Safely import a module with fallback""" |
|
if package_name is None: |
|
package_name = module_name |
|
try: |
|
return __import__(module_name.replace("-", "_")) |
|
except ImportError: |
|
print(f"Module {module_name} not found, functionality limited") |
|
return None |
|
|
|
def setup_environment(): |
|
"""Setup environment with error handling""" |
|
dependencies = [ |
|
"sageattention==1.0.6", |
|
"insightface", |
|
"facexlib", |
|
"diffusers>=0.30.0", |
|
"transformers>=4.44.0", |
|
"accelerate>=0.34.0", |
|
"xformers", |
|
"opencv-python", |
|
"imageio[ffmpeg]", |
|
"moviepy", |
|
"librosa", |
|
"soundfile" |
|
] |
|
|
|
for dep in dependencies: |
|
try: |
|
module_name = dep.split("==")[0].split(">=")[0].split("[")[0] |
|
safe_import(module_name) |
|
except Exception as e: |
|
print(f"Could not process {dep}: {e}") |
|
if subprocess: |
|
try: |
|
subprocess.run( |
|
[sys.executable, "-m", "pip", "install", dep], |
|
check=False, |
|
capture_output=True, |
|
timeout=30 |
|
) |
|
except Exception as install_error: |
|
print(f"Failed to install {dep}: {install_error}") |
|
|
|
def download_essential_models(): |
|
"""Pre-download models with full error handling""" |
|
try: |
|
from huggingface_hub import snapshot_download |
|
|
|
print("Attempting to download Hunyuan Video Avatar models...") |
|
|
|
try: |
|
snapshot_download( |
|
repo_id="tencent/HunyuanVideo-Avatar", |
|
cache_dir=HF_CACHE_DIR, |
|
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], |
|
ignore_patterns=["*.mp4", "*.avi", "*.mov"], |
|
resume_download=True, |
|
max_workers=2 |
|
) |
|
except Exception as e: |
|
print(f"Could not download HunyuanVideo-Avatar: {e}") |
|
|
|
try: |
|
snapshot_download( |
|
repo_id="tencent/HunyuanVideo", |
|
cache_dir=HF_CACHE_DIR, |
|
allow_patterns=["*.safetensors", "*.json", "*.txt"], |
|
ignore_patterns=["*.mp4", "*.avi"], |
|
resume_download=True, |
|
max_workers=2 |
|
) |
|
except Exception as e: |
|
print(f"Could not download HunyuanVideo: {e}") |
|
|
|
print("Model download attempt completed") |
|
|
|
except ImportError: |
|
print("huggingface_hub not available, skipping model download") |
|
except Exception as e: |
|
print(f"Model download error: {e}") |
|
|
|
def create_hf_config(): |
|
"""Create config with error handling""" |
|
config = { |
|
"model_settings": { |
|
"profile": 3, |
|
"quantize_transformer": True, |
|
"attention_mode": "sage", |
|
"compile": False, |
|
"teacache": "2.0" |
|
}, |
|
"avatar_settings": { |
|
"max_frames": 120, |
|
"resolution": "512x512", |
|
"emotion_control": True, |
|
"multi_character": True |
|
}, |
|
"memory_optimization": { |
|
"enable_vae_tiling": True, |
|
"enable_cpu_offload": True, |
|
"max_batch_size": 1, |
|
"gradient_checkpointing": True |
|
}, |
|
"audio_processing": { |
|
"sample_rate": 16000, |
|
"max_duration": 15, |
|
"supported_formats": ["wav", "mp3", "m4a"] |
|
} |
|
} |
|
|
|
config_path = os.path.join(TEMP_DIR, "hf_config.json") |
|
try: |
|
with open(config_path, "w", encoding='utf-8') as f: |
|
json.dump(config, f, indent=2) |
|
except Exception as e: |
|
print(f"Could not save config: {e}") |
|
config_path = None |
|
|
|
return config |
|
|
|
def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512): |
|
"""Create a dummy video file for testing""" |
|
try: |
|
import numpy as np |
|
import cv2 |
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) |
|
|
|
for i in range(duration * fps): |
|
|
|
frame = np.ones((height, width, 3), dtype=np.uint8) * 50 |
|
text = f"Frame {i+1}" |
|
cv2.putText(frame, text, (width//4, height//2), |
|
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) |
|
out.write(frame) |
|
|
|
out.release() |
|
return True |
|
except Exception as e: |
|
print(f"Could not create video with OpenCV: {e}") |
|
|
|
try: |
|
with open(output_path, 'wb') as f: |
|
f.write(b'dummy video content') |
|
return True |
|
except: |
|
return False |
|
|
|
class WanGPInterface: |
|
"""WanGP Interface with full error handling""" |
|
|
|
def __init__(self, config): |
|
self.config = config or {} |
|
self.device = "cpu" |
|
if HAS_TORCH: |
|
try: |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
except: |
|
self.device = "cpu" |
|
self.models_loaded = False |
|
|
|
def load_models(self): |
|
"""Load models with error handling""" |
|
if self.models_loaded: |
|
return True |
|
|
|
try: |
|
print("Loading Hunyuan Video Avatar models (placeholder)...") |
|
|
|
import time |
|
time.sleep(0.5) |
|
self.models_loaded = True |
|
print("β
Models loaded successfully (simulated)!") |
|
return True |
|
except Exception as e: |
|
print(f"Error in model loading: {e}") |
|
self.models_loaded = False |
|
return False |
|
|
|
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): |
|
"""Generate avatar video with comprehensive error handling""" |
|
try: |
|
|
|
if audio_file is None: |
|
return None, "β Error: No audio file provided" |
|
|
|
if avatar_image is None: |
|
return None, "β Error: No avatar image provided" |
|
|
|
|
|
if not self.load_models(): |
|
print("Models not loaded, using dummy generation") |
|
|
|
|
|
output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4" |
|
output_path = os.path.join(TEMP_DIR, output_filename) |
|
|
|
|
|
if create_dummy_video(output_path, duration=5): |
|
if os.path.exists(output_path): |
|
return output_path, "β
Video generated successfully (demo mode)!" |
|
else: |
|
return None, "β Error: Failed to create output file" |
|
else: |
|
return None, "β Error: Video generation failed" |
|
|
|
except Exception as e: |
|
error_msg = f"β Error in avatar generation: {str(e)}" |
|
print(error_msg) |
|
return None, error_msg |
|
|
|
def generate_video(self, prompt, duration=5, resolution="512x512"): |
|
"""Generate video from text with error handling""" |
|
try: |
|
if not prompt: |
|
return "β Error: No prompt provided" |
|
|
|
|
|
try: |
|
width, height = map(int, resolution.split('x')) |
|
except: |
|
width, height = 512, 512 |
|
|
|
|
|
if not self.load_models(): |
|
print("Models not loaded, using dummy generation") |
|
|
|
|
|
output_filename = f"video_{os.getpid()}_{id(self)}.mp4" |
|
output_path = os.path.join(TEMP_DIR, output_filename) |
|
|
|
|
|
if create_dummy_video(output_path, duration=int(duration), width=width, height=height): |
|
if os.path.exists(output_path): |
|
return output_path, f"β
Generated video for prompt: {prompt[:50]}..." |
|
else: |
|
return None, "β Error: Failed to create output file" |
|
else: |
|
return None, "β Error: Video generation failed" |
|
|
|
except Exception as e: |
|
error_msg = f"β Error in video generation: {str(e)}" |
|
print(error_msg) |
|
return None, error_msg |
|
|
|
def create_gradio_interface(wangp_interface): |
|
"""Create Gradio interface with error handling""" |
|
|
|
try: |
|
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: |
|
gr.HTML(""" |
|
<div style="text-align: center; margin-bottom: 20px;"> |
|
<h1>π WanGP v6.3 - Hunyuan Video Avatar</h1> |
|
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p> |
|
<p style="color: orange;">β οΈ Running in Demo Mode - Using placeholder outputs</p> |
|
</div> |
|
""") |
|
|
|
with gr.Tabs(): |
|
|
|
with gr.TabItem("π Avatar Generation"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_input = gr.Audio( |
|
label="Audio Input", |
|
type="filepath" |
|
) |
|
avatar_image = gr.Image( |
|
label="Avatar Image", |
|
type="filepath" |
|
) |
|
emotion_control = gr.Dropdown( |
|
choices=["neutral", "happy", "sad", "angry", "surprised"], |
|
value="neutral", |
|
label="Emotion Control" |
|
) |
|
avatar_prompt = gr.Textbox( |
|
label="Additional Prompt (Optional)", |
|
placeholder="Describe additional details...", |
|
value="" |
|
) |
|
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary") |
|
|
|
with gr.Column(): |
|
avatar_output = gr.Video(label="Generated Avatar Video") |
|
avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready") |
|
|
|
|
|
with gr.TabItem("πΉ Text to Video"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
video_prompt = gr.Textbox( |
|
label="Video Prompt", |
|
placeholder="Describe the video you want to generate...", |
|
lines=3, |
|
value="" |
|
) |
|
duration_slider = gr.Slider( |
|
minimum=2, |
|
maximum=10, |
|
value=5, |
|
step=1, |
|
label="Duration (seconds)" |
|
) |
|
resolution_dropdown = gr.Dropdown( |
|
choices=["512x512", "768x768", "1024x1024"], |
|
value="512x512", |
|
label="Resolution" |
|
) |
|
generate_video_btn = gr.Button("Generate Video", variant="primary") |
|
|
|
with gr.Column(): |
|
video_output = gr.Video(label="Generated Video") |
|
video_status = gr.Textbox(label="Status", interactive=False, value="Ready") |
|
|
|
|
|
def safe_avatar_generation(*args): |
|
try: |
|
return wangp_interface.generate_avatar_video(*args) |
|
except Exception as e: |
|
return None, f"β Unexpected error: {str(e)}" |
|
|
|
def safe_video_generation(*args): |
|
try: |
|
result = wangp_interface.generate_video(*args) |
|
if isinstance(result, tuple): |
|
return result |
|
else: |
|
return None, result |
|
except Exception as e: |
|
return None, f"β Unexpected error: {str(e)}" |
|
|
|
generate_avatar_btn.click( |
|
fn=safe_avatar_generation, |
|
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control], |
|
outputs=[avatar_output, avatar_status] |
|
) |
|
|
|
generate_video_btn.click( |
|
fn=safe_video_generation, |
|
inputs=[video_prompt, duration_slider, resolution_dropdown], |
|
outputs=[video_output, video_status] |
|
) |
|
|
|
gr.HTML(""" |
|
<div style="text-align: center; margin-top: 20px; color: #666;"> |
|
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p> |
|
<p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p> |
|
</div> |
|
""") |
|
|
|
return demo |
|
|
|
except Exception as e: |
|
print(f"Error creating Gradio interface: {e}") |
|
|
|
demo = gr.Interface( |
|
fn=lambda x: f"Error: {str(e)}", |
|
inputs="text", |
|
outputs="text", |
|
title="WanGP v6.3 - Error State" |
|
) |
|
return demo |
|
|
|
def main(): |
|
"""Main function with comprehensive error handling""" |
|
print("π Starting WanGP v6.3 with Hunyuan Video Avatar...") |
|
|
|
try: |
|
|
|
setup_environment() |
|
except Exception as e: |
|
print(f"Environment setup warning: {e}") |
|
|
|
try: |
|
|
|
config = create_hf_config() |
|
except Exception as e: |
|
print(f"Config creation warning: {e}") |
|
config = {} |
|
|
|
try: |
|
|
|
download_essential_models() |
|
except Exception as e: |
|
print(f"Model download skipped: {e}") |
|
|
|
try: |
|
|
|
wangp_interface = WanGPInterface(config) |
|
except Exception as e: |
|
print(f"Interface initialization error: {e}") |
|
|
|
class MinimalInterface: |
|
def __init__(self): |
|
self.config = {} |
|
def generate_avatar_video(self, *args): |
|
return None, "Service temporarily unavailable" |
|
def generate_video(self, *args): |
|
return None, "Service temporarily unavailable" |
|
wangp_interface = MinimalInterface() |
|
|
|
try: |
|
|
|
demo = create_gradio_interface(wangp_interface) |
|
|
|
print("β
Setup complete! Launching application...") |
|
|
|
|
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), |
|
share=False, |
|
debug=False, |
|
show_error=True, |
|
prevent_thread_lock=False |
|
) |
|
except Exception as e: |
|
print(f"β Failed to launch Gradio: {e}") |
|
print("Attempting fallback launch...") |
|
try: |
|
|
|
import gradio as gr |
|
gr.Interface( |
|
fn=lambda x: "System Error - Please restart", |
|
inputs="text", |
|
outputs="text" |
|
).launch() |
|
except: |
|
print("β Complete failure. Exiting.") |
|
sys.exit(1) |
|
|
|
if __name__ == "__main__": |
|
main() |