Wan2GP / app.py
openfree's picture
Update app.py
8949c1a verified
import os
import sys
import json
from pathlib import Path
import tempfile
import shutil
# Safe imports with fallbacks
try:
import gradio as gr
except ImportError:
print("Installing gradio...")
os.system(f"{sys.executable} -m pip install gradio")
import gradio as gr
try:
import subprocess
except ImportError:
subprocess = None
try:
import torch
HAS_TORCH = True
except ImportError:
HAS_TORCH = False
print("PyTorch not available, using CPU mode")
# Ensure temp directories exist
TEMP_DIR = tempfile.gettempdir()
HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache")
os.makedirs(HF_CACHE_DIR, exist_ok=True)
# Set environment variables safely
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR
os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
def safe_import(module_name, package_name=None):
"""Safely import a module with fallback"""
if package_name is None:
package_name = module_name
try:
return __import__(module_name.replace("-", "_"))
except ImportError:
print(f"Module {module_name} not found, functionality limited")
return None
def setup_environment():
"""Setup environment with error handling"""
dependencies = [
"sageattention==1.0.6",
"insightface",
"facexlib",
"diffusers>=0.30.0",
"transformers>=4.44.0",
"accelerate>=0.34.0",
"xformers",
"opencv-python",
"imageio[ffmpeg]",
"moviepy",
"librosa",
"soundfile"
]
for dep in dependencies:
try:
module_name = dep.split("==")[0].split(">=")[0].split("[")[0]
safe_import(module_name)
except Exception as e:
print(f"Could not process {dep}: {e}")
if subprocess:
try:
subprocess.run(
[sys.executable, "-m", "pip", "install", dep],
check=False,
capture_output=True,
timeout=30
)
except Exception as install_error:
print(f"Failed to install {dep}: {install_error}")
def download_essential_models():
"""Pre-download models with full error handling"""
try:
from huggingface_hub import snapshot_download
print("Attempting to download Hunyuan Video Avatar models...")
try:
snapshot_download(
repo_id="tencent/HunyuanVideo-Avatar",
cache_dir=HF_CACHE_DIR,
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
ignore_patterns=["*.mp4", "*.avi", "*.mov"],
resume_download=True,
max_workers=2
)
except Exception as e:
print(f"Could not download HunyuanVideo-Avatar: {e}")
try:
snapshot_download(
repo_id="tencent/HunyuanVideo",
cache_dir=HF_CACHE_DIR,
allow_patterns=["*.safetensors", "*.json", "*.txt"],
ignore_patterns=["*.mp4", "*.avi"],
resume_download=True,
max_workers=2
)
except Exception as e:
print(f"Could not download HunyuanVideo: {e}")
print("Model download attempt completed")
except ImportError:
print("huggingface_hub not available, skipping model download")
except Exception as e:
print(f"Model download error: {e}")
def create_hf_config():
"""Create config with error handling"""
config = {
"model_settings": {
"profile": 3,
"quantize_transformer": True,
"attention_mode": "sage",
"compile": False,
"teacache": "2.0"
},
"avatar_settings": {
"max_frames": 120,
"resolution": "512x512",
"emotion_control": True,
"multi_character": True
},
"memory_optimization": {
"enable_vae_tiling": True,
"enable_cpu_offload": True,
"max_batch_size": 1,
"gradient_checkpointing": True
},
"audio_processing": {
"sample_rate": 16000,
"max_duration": 15,
"supported_formats": ["wav", "mp3", "m4a"]
}
}
config_path = os.path.join(TEMP_DIR, "hf_config.json")
try:
with open(config_path, "w", encoding='utf-8') as f:
json.dump(config, f, indent=2)
except Exception as e:
print(f"Could not save config: {e}")
config_path = None
return config
def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512):
"""Create a dummy video file for testing"""
try:
import numpy as np
import cv2
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
for i in range(duration * fps):
# Create gradient frame
frame = np.ones((height, width, 3), dtype=np.uint8) * 50
text = f"Frame {i+1}"
cv2.putText(frame, text, (width//4, height//2),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
out.write(frame)
out.release()
return True
except Exception as e:
print(f"Could not create video with OpenCV: {e}")
# Create empty file as fallback
try:
with open(output_path, 'wb') as f:
f.write(b'dummy video content')
return True
except:
return False
class WanGPInterface:
"""WanGP Interface with full error handling"""
def __init__(self, config):
self.config = config or {}
self.device = "cpu"
if HAS_TORCH:
try:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
except:
self.device = "cpu"
self.models_loaded = False
def load_models(self):
"""Load models with error handling"""
if self.models_loaded:
return True
try:
print("Loading Hunyuan Video Avatar models (placeholder)...")
# Placeholder for actual model loading
import time
time.sleep(0.5) # Simulate loading
self.models_loaded = True
print("βœ… Models loaded successfully (simulated)!")
return True
except Exception as e:
print(f"Error in model loading: {e}")
self.models_loaded = False
return False
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
"""Generate avatar video with comprehensive error handling"""
try:
# Validate inputs
if audio_file is None:
return None, "❌ Error: No audio file provided"
if avatar_image is None:
return None, "❌ Error: No avatar image provided"
# Ensure model is loaded
if not self.load_models():
print("Models not loaded, using dummy generation")
# Create output path
output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4"
output_path = os.path.join(TEMP_DIR, output_filename)
# Create dummy video
if create_dummy_video(output_path, duration=5):
if os.path.exists(output_path):
return output_path, "βœ… Video generated successfully (demo mode)!"
else:
return None, "❌ Error: Failed to create output file"
else:
return None, "❌ Error: Video generation failed"
except Exception as e:
error_msg = f"❌ Error in avatar generation: {str(e)}"
print(error_msg)
return None, error_msg
def generate_video(self, prompt, duration=5, resolution="512x512"):
"""Generate video from text with error handling"""
try:
if not prompt:
return "❌ Error: No prompt provided"
# Parse resolution
try:
width, height = map(int, resolution.split('x'))
except:
width, height = 512, 512
# Ensure model is loaded
if not self.load_models():
print("Models not loaded, using dummy generation")
# Create output path
output_filename = f"video_{os.getpid()}_{id(self)}.mp4"
output_path = os.path.join(TEMP_DIR, output_filename)
# Create dummy video
if create_dummy_video(output_path, duration=int(duration), width=width, height=height):
if os.path.exists(output_path):
return output_path, f"βœ… Generated video for prompt: {prompt[:50]}..."
else:
return None, "❌ Error: Failed to create output file"
else:
return None, "❌ Error: Video generation failed"
except Exception as e:
error_msg = f"❌ Error in video generation: {str(e)}"
print(error_msg)
return None, error_msg
def create_gradio_interface(wangp_interface):
"""Create Gradio interface with error handling"""
try:
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🎭 WanGP v6.3 - Hunyuan Video Avatar</h1>
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
<p style="color: orange;">⚠️ Running in Demo Mode - Using placeholder outputs</p>
</div>
""")
with gr.Tabs():
# Avatar Generation Tab
with gr.TabItem("🎭 Avatar Generation"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="filepath"
)
avatar_image = gr.Image(
label="Avatar Image",
type="filepath"
)
emotion_control = gr.Dropdown(
choices=["neutral", "happy", "sad", "angry", "surprised"],
value="neutral",
label="Emotion Control"
)
avatar_prompt = gr.Textbox(
label="Additional Prompt (Optional)",
placeholder="Describe additional details...",
value=""
)
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
with gr.Column():
avatar_output = gr.Video(label="Generated Avatar Video")
avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready")
# Text-to-Video Tab
with gr.TabItem("πŸ“Ή Text to Video"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(
label="Video Prompt",
placeholder="Describe the video you want to generate...",
lines=3,
value=""
)
duration_slider = gr.Slider(
minimum=2,
maximum=10,
value=5,
step=1,
label="Duration (seconds)"
)
resolution_dropdown = gr.Dropdown(
choices=["512x512", "768x768", "1024x1024"],
value="512x512",
label="Resolution"
)
generate_video_btn = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video")
video_status = gr.Textbox(label="Status", interactive=False, value="Ready")
# Event handlers with error handling
def safe_avatar_generation(*args):
try:
return wangp_interface.generate_avatar_video(*args)
except Exception as e:
return None, f"❌ Unexpected error: {str(e)}"
def safe_video_generation(*args):
try:
result = wangp_interface.generate_video(*args)
if isinstance(result, tuple):
return result
else:
return None, result
except Exception as e:
return None, f"❌ Unexpected error: {str(e)}"
generate_avatar_btn.click(
fn=safe_avatar_generation,
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
outputs=[avatar_output, avatar_status]
)
generate_video_btn.click(
fn=safe_video_generation,
inputs=[video_prompt, duration_slider, resolution_dropdown],
outputs=[video_output, video_status]
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; color: #666;">
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
<p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p>
</div>
""")
return demo
except Exception as e:
print(f"Error creating Gradio interface: {e}")
# Return minimal interface
demo = gr.Interface(
fn=lambda x: f"Error: {str(e)}",
inputs="text",
outputs="text",
title="WanGP v6.3 - Error State"
)
return demo
def main():
"""Main function with comprehensive error handling"""
print("πŸš€ Starting WanGP v6.3 with Hunyuan Video Avatar...")
try:
# Setup environment
setup_environment()
except Exception as e:
print(f"Environment setup warning: {e}")
try:
# Create configuration
config = create_hf_config()
except Exception as e:
print(f"Config creation warning: {e}")
config = {}
try:
# Download models in background
download_essential_models()
except Exception as e:
print(f"Model download skipped: {e}")
try:
# Initialize WanGP interface
wangp_interface = WanGPInterface(config)
except Exception as e:
print(f"Interface initialization error: {e}")
# Create minimal interface
class MinimalInterface:
def __init__(self):
self.config = {}
def generate_avatar_video(self, *args):
return None, "Service temporarily unavailable"
def generate_video(self, *args):
return None, "Service temporarily unavailable"
wangp_interface = MinimalInterface()
try:
# Create and launch Gradio interface
demo = create_gradio_interface(wangp_interface)
print("βœ… Setup complete! Launching application...")
# Launch with error handling
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)),
share=False,
debug=False,
show_error=True,
prevent_thread_lock=False
)
except Exception as e:
print(f"❌ Failed to launch Gradio: {e}")
print("Attempting fallback launch...")
try:
# Minimal fallback
import gradio as gr
gr.Interface(
fn=lambda x: "System Error - Please restart",
inputs="text",
outputs="text"
).launch()
except:
print("❌ Complete failure. Exiting.")
sys.exit(1)
if __name__ == "__main__":
main()