File size: 17,279 Bytes
9d9638e
 
 
0dec37b
8949c1a
 
9d9638e
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9638e
8949c1a
 
 
 
9d9638e
8949c1a
 
 
 
 
9d9638e
0dec37b
9d9638e
8949c1a
 
 
 
 
 
 
 
 
 
9d9638e
8949c1a
0dec37b
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9638e
0dec37b
 
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9638e
 
8949c1a
9d9638e
0dec37b
 
8949c1a
0dec37b
8949c1a
 
 
 
 
 
 
 
 
 
 
9d9638e
8949c1a
 
 
 
 
 
 
 
 
 
 
9d9638e
8949c1a
0dec37b
8949c1a
 
9d9638e
8949c1a
9d9638e
 
8949c1a
9d9638e
 
8949c1a
9d9638e
 
8949c1a
9d9638e
 
 
8949c1a
 
9d9638e
 
 
 
 
 
 
 
 
 
 
8949c1a
9d9638e
 
 
 
8949c1a
 
 
 
 
 
 
9d9638e
 
 
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
8949c1a
0dec37b
 
8949c1a
 
 
 
 
 
 
0dec37b
 
 
8949c1a
0dec37b
8949c1a
0dec37b
 
8949c1a
 
 
 
0dec37b
8949c1a
 
0dec37b
8949c1a
 
 
0dec37b
 
8949c1a
0dec37b
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
 
8949c1a
 
 
0dec37b
 
8949c1a
0dec37b
8949c1a
 
 
 
 
 
 
 
0dec37b
8949c1a
 
 
0dec37b
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
8949c1a
 
 
0dec37b
 
8949c1a
0dec37b
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
8949c1a
0dec37b
8949c1a
 
 
 
 
 
 
 
0dec37b
8949c1a
0dec37b
8949c1a
 
9d9638e
 
8949c1a
 
 
 
 
0dec37b
8949c1a
 
 
 
 
 
0dec37b
 
8949c1a
0dec37b
 
8949c1a
0dec37b
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9638e
8949c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import os
import sys
import json
from pathlib import Path
import tempfile
import shutil

# Safe imports with fallbacks
try:
    import gradio as gr
except ImportError:
    print("Installing gradio...")
    os.system(f"{sys.executable} -m pip install gradio")
    import gradio as gr

try:
    import subprocess
except ImportError:
    subprocess = None

try:
    import torch
    HAS_TORCH = True
except ImportError:
    HAS_TORCH = False
    print("PyTorch not available, using CPU mode")

# Ensure temp directories exist
TEMP_DIR = tempfile.gettempdir()
HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache")
os.makedirs(HF_CACHE_DIR, exist_ok=True)

# Set environment variables safely
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR
os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"

def safe_import(module_name, package_name=None):
    """Safely import a module with fallback"""
    if package_name is None:
        package_name = module_name
    try:
        return __import__(module_name.replace("-", "_"))
    except ImportError:
        print(f"Module {module_name} not found, functionality limited")
        return None

def setup_environment():
    """Setup environment with error handling"""
    dependencies = [
        "sageattention==1.0.6",
        "insightface",
        "facexlib", 
        "diffusers>=0.30.0",
        "transformers>=4.44.0",
        "accelerate>=0.34.0",
        "xformers",
        "opencv-python",
        "imageio[ffmpeg]",
        "moviepy",
        "librosa",
        "soundfile"
    ]
    
    for dep in dependencies:
        try:
            module_name = dep.split("==")[0].split(">=")[0].split("[")[0]
            safe_import(module_name)
        except Exception as e:
            print(f"Could not process {dep}: {e}")
            if subprocess:
                try:
                    subprocess.run(
                        [sys.executable, "-m", "pip", "install", dep], 
                        check=False, 
                        capture_output=True,
                        timeout=30
                    )
                except Exception as install_error:
                    print(f"Failed to install {dep}: {install_error}")

def download_essential_models():
    """Pre-download models with full error handling"""
    try:
        from huggingface_hub import snapshot_download
        
        print("Attempting to download Hunyuan Video Avatar models...")
        
        try:
            snapshot_download(
                repo_id="tencent/HunyuanVideo-Avatar", 
                cache_dir=HF_CACHE_DIR,
                allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
                ignore_patterns=["*.mp4", "*.avi", "*.mov"],
                resume_download=True,
                max_workers=2
            )
        except Exception as e:
            print(f"Could not download HunyuanVideo-Avatar: {e}")
        
        try:
            snapshot_download(
                repo_id="tencent/HunyuanVideo",
                cache_dir=HF_CACHE_DIR, 
                allow_patterns=["*.safetensors", "*.json", "*.txt"],
                ignore_patterns=["*.mp4", "*.avi"],
                resume_download=True,
                max_workers=2
            )
        except Exception as e:
            print(f"Could not download HunyuanVideo: {e}")
        
        print("Model download attempt completed")
        
    except ImportError:
        print("huggingface_hub not available, skipping model download")
    except Exception as e:
        print(f"Model download error: {e}")

def create_hf_config():
    """Create config with error handling"""
    config = {
        "model_settings": {
            "profile": 3,
            "quantize_transformer": True,
            "attention_mode": "sage",
            "compile": False,
            "teacache": "2.0"
        },
        "avatar_settings": {
            "max_frames": 120,
            "resolution": "512x512",
            "emotion_control": True,
            "multi_character": True
        },
        "memory_optimization": {
            "enable_vae_tiling": True,
            "enable_cpu_offload": True,
            "max_batch_size": 1,
            "gradient_checkpointing": True
        },
        "audio_processing": {
            "sample_rate": 16000,
            "max_duration": 15,
            "supported_formats": ["wav", "mp3", "m4a"]
        }
    }
    
    config_path = os.path.join(TEMP_DIR, "hf_config.json")
    try:
        with open(config_path, "w", encoding='utf-8') as f:
            json.dump(config, f, indent=2)
    except Exception as e:
        print(f"Could not save config: {e}")
        config_path = None
    
    return config

def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512):
    """Create a dummy video file for testing"""
    try:
        import numpy as np
        import cv2
        
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        for i in range(duration * fps):
            # Create gradient frame
            frame = np.ones((height, width, 3), dtype=np.uint8) * 50
            text = f"Frame {i+1}"
            cv2.putText(frame, text, (width//4, height//2), 
                       cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            out.write(frame)
        
        out.release()
        return True
    except Exception as e:
        print(f"Could not create video with OpenCV: {e}")
        # Create empty file as fallback
        try:
            with open(output_path, 'wb') as f:
                f.write(b'dummy video content')
            return True
        except:
            return False

class WanGPInterface:
    """WanGP Interface with full error handling"""
    
    def __init__(self, config):
        self.config = config or {}
        self.device = "cpu"
        if HAS_TORCH:
            try:
                self.device = "cuda" if torch.cuda.is_available() else "cpu"
            except:
                self.device = "cpu"
        self.models_loaded = False
        
    def load_models(self):
        """Load models with error handling"""
        if self.models_loaded:
            return True
            
        try:
            print("Loading Hunyuan Video Avatar models (placeholder)...")
            # Placeholder for actual model loading
            import time
            time.sleep(0.5)  # Simulate loading
            self.models_loaded = True
            print("βœ… Models loaded successfully (simulated)!")
            return True
        except Exception as e:
            print(f"Error in model loading: {e}")
            self.models_loaded = False
            return False
    
    def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
        """Generate avatar video with comprehensive error handling"""
        try:
            # Validate inputs
            if audio_file is None:
                return None, "❌ Error: No audio file provided"
            
            if avatar_image is None:
                return None, "❌ Error: No avatar image provided"
            
            # Ensure model is loaded
            if not self.load_models():
                print("Models not loaded, using dummy generation")
            
            # Create output path
            output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4"
            output_path = os.path.join(TEMP_DIR, output_filename)
            
            # Create dummy video
            if create_dummy_video(output_path, duration=5):
                if os.path.exists(output_path):
                    return output_path, "βœ… Video generated successfully (demo mode)!"
                else:
                    return None, "❌ Error: Failed to create output file"
            else:
                return None, "❌ Error: Video generation failed"
            
        except Exception as e:
            error_msg = f"❌ Error in avatar generation: {str(e)}"
            print(error_msg)
            return None, error_msg
    
    def generate_video(self, prompt, duration=5, resolution="512x512"):
        """Generate video from text with error handling"""
        try:
            if not prompt:
                return "❌ Error: No prompt provided"
            
            # Parse resolution
            try:
                width, height = map(int, resolution.split('x'))
            except:
                width, height = 512, 512
            
            # Ensure model is loaded
            if not self.load_models():
                print("Models not loaded, using dummy generation")
            
            # Create output path
            output_filename = f"video_{os.getpid()}_{id(self)}.mp4"
            output_path = os.path.join(TEMP_DIR, output_filename)
            
            # Create dummy video
            if create_dummy_video(output_path, duration=int(duration), width=width, height=height):
                if os.path.exists(output_path):
                    return output_path, f"βœ… Generated video for prompt: {prompt[:50]}..."
                else:
                    return None, "❌ Error: Failed to create output file"
            else:
                return None, "❌ Error: Video generation failed"
                
        except Exception as e:
            error_msg = f"❌ Error in video generation: {str(e)}"
            print(error_msg)
            return None, error_msg

def create_gradio_interface(wangp_interface):
    """Create Gradio interface with error handling"""
    
    try:
        with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
            gr.HTML("""
            <div style="text-align: center; margin-bottom: 20px;">
                <h1>🎭 WanGP v6.3 - Hunyuan Video Avatar</h1>
                <p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
                <p style="color: orange;">⚠️ Running in Demo Mode - Using placeholder outputs</p>
            </div>
            """)
            
            with gr.Tabs():
                # Avatar Generation Tab
                with gr.TabItem("🎭 Avatar Generation"):
                    with gr.Row():
                        with gr.Column():
                            audio_input = gr.Audio(
                                label="Audio Input",
                                type="filepath"
                            )
                            avatar_image = gr.Image(
                                label="Avatar Image",
                                type="filepath"
                            )
                            emotion_control = gr.Dropdown(
                                choices=["neutral", "happy", "sad", "angry", "surprised"],
                                value="neutral",
                                label="Emotion Control"
                            )
                            avatar_prompt = gr.Textbox(
                                label="Additional Prompt (Optional)",
                                placeholder="Describe additional details...",
                                value=""
                            )
                            generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
                        
                        with gr.Column():
                            avatar_output = gr.Video(label="Generated Avatar Video")
                            avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready")
                
                # Text-to-Video Tab
                with gr.TabItem("πŸ“Ή Text to Video"):
                    with gr.Row():
                        with gr.Column():
                            video_prompt = gr.Textbox(
                                label="Video Prompt",
                                placeholder="Describe the video you want to generate...",
                                lines=3,
                                value=""
                            )
                            duration_slider = gr.Slider(
                                minimum=2,
                                maximum=10,
                                value=5,
                                step=1,
                                label="Duration (seconds)"
                            )
                            resolution_dropdown = gr.Dropdown(
                                choices=["512x512", "768x768", "1024x1024"],
                                value="512x512",
                                label="Resolution"
                            )
                            generate_video_btn = gr.Button("Generate Video", variant="primary")
                        
                        with gr.Column():
                            video_output = gr.Video(label="Generated Video")
                            video_status = gr.Textbox(label="Status", interactive=False, value="Ready")
            
            # Event handlers with error handling
            def safe_avatar_generation(*args):
                try:
                    return wangp_interface.generate_avatar_video(*args)
                except Exception as e:
                    return None, f"❌ Unexpected error: {str(e)}"
            
            def safe_video_generation(*args):
                try:
                    result = wangp_interface.generate_video(*args)
                    if isinstance(result, tuple):
                        return result
                    else:
                        return None, result
                except Exception as e:
                    return None, f"❌ Unexpected error: {str(e)}"
            
            generate_avatar_btn.click(
                fn=safe_avatar_generation,
                inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
                outputs=[avatar_output, avatar_status]
            )
            
            generate_video_btn.click(
                fn=safe_video_generation,
                inputs=[video_prompt, duration_slider, resolution_dropdown],
                outputs=[video_output, video_status]
            )
            
            gr.HTML("""
            <div style="text-align: center; margin-top: 20px; color: #666;">
                <p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
                <p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p>
            </div>
            """)
        
        return demo
        
    except Exception as e:
        print(f"Error creating Gradio interface: {e}")
        # Return minimal interface
        demo = gr.Interface(
            fn=lambda x: f"Error: {str(e)}",
            inputs="text",
            outputs="text",
            title="WanGP v6.3 - Error State"
        )
        return demo

def main():
    """Main function with comprehensive error handling"""
    print("πŸš€ Starting WanGP v6.3 with Hunyuan Video Avatar...")
    
    try:
        # Setup environment
        setup_environment()
    except Exception as e:
        print(f"Environment setup warning: {e}")
    
    try:
        # Create configuration
        config = create_hf_config()
    except Exception as e:
        print(f"Config creation warning: {e}")
        config = {}
    
    try:
        # Download models in background
        download_essential_models()
    except Exception as e:
        print(f"Model download skipped: {e}")
    
    try:
        # Initialize WanGP interface
        wangp_interface = WanGPInterface(config)
    except Exception as e:
        print(f"Interface initialization error: {e}")
        # Create minimal interface
        class MinimalInterface:
            def __init__(self):
                self.config = {}
            def generate_avatar_video(self, *args):
                return None, "Service temporarily unavailable"
            def generate_video(self, *args):
                return None, "Service temporarily unavailable"
        wangp_interface = MinimalInterface()
    
    try:
        # Create and launch Gradio interface
        demo = create_gradio_interface(wangp_interface)
        
        print("βœ… Setup complete! Launching application...")
        
        # Launch with error handling
        demo.launch(
            server_name="0.0.0.0",
            server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)),
            share=False,
            debug=False,
            show_error=True,
            prevent_thread_lock=False
        )
    except Exception as e:
        print(f"❌ Failed to launch Gradio: {e}")
        print("Attempting fallback launch...")
        try:
            # Minimal fallback
            import gradio as gr
            gr.Interface(
                fn=lambda x: "System Error - Please restart",
                inputs="text", 
                outputs="text"
            ).launch()
        except:
            print("❌ Complete failure. Exiting.")
            sys.exit(1)

if __name__ == "__main__":
    main()