File size: 12,872 Bytes
ee94686
 
 
 
21b365a
ee94686
 
 
 
21b365a
 
 
ee94686
 
 
21b365a
 
 
 
ee94686
 
80efb39
ee94686
 
21b365a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee94686
21b365a
 
ee94686
 
21b365a
ee94686
21b365a
 
 
ee94686
 
 
21b365a
 
 
 
 
 
 
 
 
 
 
ee94686
 
21b365a
ee94686
 
 
 
 
 
 
 
 
21b365a
ee94686
 
 
 
21b365a
 
 
 
 
ee94686
 
21b365a
 
 
 
 
 
 
 
 
 
ee94686
 
21b365a
 
 
 
 
 
 
ee94686
 
 
 
 
 
 
 
 
21b365a
 
ee94686
 
 
21b365a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee94686
 
 
 
21b365a
 
 
 
 
 
ee94686
 
 
 
 
21b365a
 
 
ee94686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b365a
ee94686
21b365a
 
 
ee94686
 
 
 
 
 
 
 
 
 
 
 
 
21b365a
 
 
 
 
 
 
 
 
 
 
 
 
2a8e978
21b365a
ee94686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b365a
ee94686
 
3eefee4
 
 
 
 
 
 
 
ee94686
 
21b365a
ee94686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21b365a
 
 
 
 
 
 
ee94686
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import time
import threading

# Global variables for model and tokenizer
model = None
tokenizer = None
model_loading = False
model_loaded = False
loading_error = None

def load_model():
    """Load the model and tokenizer"""
    global model, tokenizer, model_loading, model_loaded, loading_error
    
    model_loading = True
    loading_error = None
    
    try:
        model_name = "UnarineLeo/nllb-en-ve-finetuned"
        print(f"Loading model: {model_name}")
        
        # Try loading with different configurations
        try:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForSeq2SeqLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                device_map="auto" if torch.cuda.is_available() else None
            )
        except Exception as e1:
            print(f"First attempt failed: {e1}")
            # Fallback: try without optimizations
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
        
        # Test if model works
        test_input = tokenizer("Hello", return_tensors="pt")
        with torch.no_grad():
            _ = model.generate(**test_input, max_length=10)
        
        model_loaded = True
        model_loading = False
        print("Model loaded successfully!")
        return True
        
    except Exception as e:
        loading_error = str(e)
        model_loading = False
        model_loaded = False
        print(f"Error loading model: {e}")
        return False

def get_model_status():
    """Get current model loading status"""
    if model_loaded:
        return "βœ… Model loaded and ready"
    elif model_loading:
        return "⏳ Model is loading, please wait..."
    elif loading_error:
        return f"❌ Model loading failed: {loading_error}"
    else:
        return "⏳ Initializing model..."

def translate_text(text, max_length=512, num_beams=5):
    """
    Translate English text to Venda using the fine-tuned NLLB model
    
    Args:
        text (str): Input English text
        max_length (int): Maximum length of translation
        num_beams (int): Number of beams for beam search
    
    Returns:
        tuple: (translated_text, status_message)
    """
    global model, tokenizer, model_loaded, model_loading
    
    if not text.strip():
        return "", "Please enter some text to translate."
    
    if not model_loaded:
        if model_loading:
            return "", "⏳ Model is still loading, please wait a moment and try again."
        else:
            return "", f"❌ Model not available. {loading_error if loading_error else 'Please refresh the page.'}"
    
    try:
        # Language codes as used in training
        source_lang = "eng_Latn"
        target_lang = "ven_Latn"
        
        # Format input exactly like in training: "eng_Latn: {text}"
        formatted_input = f"{source_lang}: {text}"
        
        # Set source language for tokenizer
        if hasattr(tokenizer, 'src_lang'):
            tokenizer.src_lang = source_lang
        
        # Tokenize input
        inputs = tokenizer(
            formatted_input, 
            return_tensors="pt", 
            padding=True, 
            truncation=True, 
            max_length=128  # Match training max_length
        )
        
        # Generate translation
        start_time = time.time()
        with torch.no_grad():
            generated_tokens = model.generate(
                **inputs,
                max_length=max_length,
                num_beams=num_beams,
                early_stopping=True,
                do_sample=False,
                pad_token_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.eos_token_id
            )
        
        # Decode translation
        raw_translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        
        # Clean up translation - remove language prefixes if present
        translation = raw_translation
        
        # Remove source language prefix if it appears in output
        if translation.startswith(f"{source_lang}:"):
            translation = translation[len(f"{source_lang}:"):].strip()
        
        # Remove target language prefix if it appears in output
        if translation.startswith(f"{target_lang}:"):
            translation = translation[len(f"{target_lang}:"):].strip()
        
        # Remove original input if it appears at the start
        if translation.lower().startswith(text.lower()):
            translation = translation[len(text):].strip()
        
        # Remove any remaining colons or prefixes at the start
        translation = translation.lstrip(': ')
        
        end_time = time.time()
        processing_time = round(end_time - start_time, 2)
        
        if translation and translation != formatted_input:
            status = f"βœ… Translation completed in {processing_time} seconds"
        else:
            status = "⚠️ Translation completed but result may be incomplete"
            if not translation:
                translation = "[No translation generated]"
        
        return translation, status
        
    except Exception as e:
        error_msg = f"❌ Translation error: {str(e)}"
        print(f"Translation error: {e}")
        import traceback
        print(f"Full traceback: {traceback.format_exc()}")
        return "", error_msg

def translate_batch(text_list):
    """
    Translate multiple lines of text
    
    Args:
        text_list (str): Multi-line text input
    
    Returns:
        tuple: (translated_text, status_message)
    """
    if not text_list.strip():
        return "", "Please enter some text to translate."
    
    lines = [line.strip() for line in text_list.split('\n') if line.strip()]
    
    if not lines:
        return "", "No valid text lines found."
    
    try:
        translations = []
        total_time = 0
        
        for i, line in enumerate(lines):
            translation, status = translate_text(line)
            if translation:
                translations.append(f"{i+1}. EN: {line}")
                translations.append(f"   VE: {translation}")
                translations.append("")
        
        if translations:
            result = "\n".join(translations)
            status_msg = f"βœ… Successfully translated {len(lines)} lines"
            return result, status_msg
        else:
            return "", "❌ No translations generated"
            
    except Exception as e:
        return "", f"❌ Batch translation error: {str(e)}"

# Start loading model in background thread
print("Initializing model...")
loading_thread = threading.Thread(target=load_model)
loading_thread.daemon = True
loading_thread.start()

# Create Gradio interface
with gr.Blocks(title="English to Venda Translator", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown("""
    # 🌍 English to Venda Translator
    
    This app translates English text to Venda (Tshivenda) using the NLLB model.
    Venda is a Bantu language spoken primarily in South Africa and Zimbabwe.
    
    **Model:** `UnarineLeo/nllb_eng_ven_terms`
    """)
    
    # Model status indicator
    status_indicator = gr.Textbox(
        value=get_model_status(),
        label="Model Status",
        interactive=False,
        max_lines=1
    )
    
    # Auto-refresh status every 3 seconds while loading
    def update_status():
        return get_model_status()
    
    # Set up periodic status updates
    demo.load(fn=update_status, outputs=status_indicator)
    
    with gr.Tab("Single Translation"):
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(
                    label="English Text",
                    placeholder="Enter English text to translate...",
                    lines=4,
                    max_lines=10
                )
                
                with gr.Row():
                    max_length_slider = gr.Slider(
                        minimum=50,
                        maximum=1000,
                        value=512,
                        step=50,
                        label="Max Translation Length"
                    )
                    
                    num_beams_slider = gr.Slider(
                        minimum=1,
                        maximum=10,
                        value=5,
                        step=1,
                        label="Number of Beams (Quality vs Speed)"
                    )
                
                translate_btn = gr.Button("πŸ”„ Translate", variant="primary")
            
            with gr.Column():
                output_text = gr.Textbox(
                    label="Venda Translation",
                    lines=4,
                    max_lines=10,
                    interactive=False
                )
                
                status_text = gr.Textbox(
                    label="Status",
                    interactive=False,
                    lines=1
                )
        
        # Examples based on statistical terminology the model was trained on
        gr.Examples(
            examples=[
                ["Hello, how are you?"],
                ["Good morning, everyone."],
                ["Thank you for your help."],
                ["What is your name?"],
                ["I am learning Venda."],
                ["Welcome to our school."],
                ["The weather is beautiful today."],
                ["Can you help me please?"]
            ],
            inputs=[input_text],
            label="Try these statistical terms (model was trained on statistical terminology):"
        )
    
    with gr.Tab("Batch Translation"):
        with gr.Row():
            with gr.Column():
                batch_input = gr.Textbox(
                    label="Multiple English Sentences",
                    placeholder="Enter multiple English sentences, one per line...",
                    lines=8,
                    max_lines=15
                )
                batch_translate_btn = gr.Button("πŸ”„ Translate All", variant="primary")
            
            with gr.Column():
                batch_output = gr.Textbox(
                    label="Batch Translations",
                    lines=8,
                    max_lines=15,
                    interactive=False
                )
                batch_status = gr.Textbox(
                    label="Status",
                    interactive=False,
                    lines=1
                )
    
    with gr.Tab("About"):
        gr.Markdown("""
        ## About This Translator
        
        This application uses a fine-tuned NLLB (No Language Left Behind) model specifically trained for English to Venda translation.
        
        ### Features:
        - **Single Translation**: Translate individual sentences or paragraphs
        - **Batch Translation**: Translate multiple sentences at once
        - **Adjustable Parameters**: Control translation quality and length
        - **Examples**: Try pre-loaded example sentences
        
        ### About Venda (Tshivenda):
        - Spoken by approximately 1.2 million people
        - Official language of South Africa
        - Also spoken in Zimbabwe
        - Part of the Bantu language family
        
        ### Usage Tips:
        - Keep sentences reasonably short for best results
        - The model works best with common, everyday language
        - Higher beam numbers generally produce better quality but slower translations
        
        ### Technical Details:
        - **Model**: UnarineLeo/nllb_eng_ven_terms
        - **Architecture**: NLLB (No Language Left Behind)
        - **Language Codes**: eng_Latn β†’ ven_Latn
        """)
    
    # Event handlers
    translate_btn.click(
        fn=translate_text,
        inputs=[input_text, max_length_slider, num_beams_slider],
        outputs=[output_text, status_text]
    )
    
    batch_translate_btn.click(
        fn=translate_batch,
        inputs=[batch_input],
        outputs=[batch_output, batch_status]
    )
    
    # Auto-translate on example selection
    input_text.submit(
        fn=translate_text,
        inputs=[input_text, max_length_slider, num_beams_slider],
        outputs=[output_text, status_text]
    )
    
    # Refresh status button
    refresh_btn = gr.Button("πŸ”„ Refresh Status", size="sm")
    refresh_btn.click(
        fn=update_status,
        outputs=[status_indicator]
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        share=True,
        debug=True,
        show_error=True
    )