Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import time
|
5 |
+
|
6 |
+
# Global variables for model and tokenizer
|
7 |
+
model = None
|
8 |
+
tokenizer = None
|
9 |
+
|
10 |
+
def load_model():
|
11 |
+
"""Load the model and tokenizer"""
|
12 |
+
global model, tokenizer
|
13 |
+
|
14 |
+
try:
|
15 |
+
model_name = "UnarineLeo/nllb_eng_ven_terms"
|
16 |
+
print(f"Loading model: {model_name}")
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
20 |
+
|
21 |
+
print("Model loaded successfully!")
|
22 |
+
return True
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Error loading model: {e}")
|
25 |
+
return False
|
26 |
+
|
27 |
+
def translate_text(text, max_length=512, num_beams=5):
|
28 |
+
"""
|
29 |
+
Translate English text to Venda
|
30 |
+
|
31 |
+
Args:
|
32 |
+
text (str): Input English text
|
33 |
+
max_length (int): Maximum length of translation
|
34 |
+
num_beams (int): Number of beams for beam search
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
tuple: (translated_text, status_message)
|
38 |
+
"""
|
39 |
+
global model, tokenizer
|
40 |
+
|
41 |
+
if not text.strip():
|
42 |
+
return "", "Please enter some text to translate."
|
43 |
+
|
44 |
+
if model is None or tokenizer is None:
|
45 |
+
return "", "Model not loaded. Please wait while the model loads."
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Set source language
|
49 |
+
tokenizer.src_lang = "eng_Latn"
|
50 |
+
|
51 |
+
# Tokenize input
|
52 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
53 |
+
|
54 |
+
# Generate translation
|
55 |
+
start_time = time.time()
|
56 |
+
with torch.no_grad():
|
57 |
+
generated_tokens = model.generate(
|
58 |
+
**inputs,
|
59 |
+
forced_bos_token_id=tokenizer.lang_code_to_id["ven_Latn"],
|
60 |
+
max_length=max_length,
|
61 |
+
num_beams=num_beams,
|
62 |
+
early_stopping=True,
|
63 |
+
do_sample=False
|
64 |
+
)
|
65 |
+
|
66 |
+
# Decode translation
|
67 |
+
translation = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
68 |
+
|
69 |
+
end_time = time.time()
|
70 |
+
processing_time = round(end_time - start_time, 2)
|
71 |
+
|
72 |
+
status = f"β
Translation completed in {processing_time} seconds"
|
73 |
+
|
74 |
+
return translation, status
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
error_msg = f"β Translation error: {str(e)}"
|
78 |
+
return "", error_msg
|
79 |
+
|
80 |
+
def translate_batch(text_list):
|
81 |
+
"""
|
82 |
+
Translate multiple lines of text
|
83 |
+
|
84 |
+
Args:
|
85 |
+
text_list (str): Multi-line text input
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
tuple: (translated_text, status_message)
|
89 |
+
"""
|
90 |
+
if not text_list.strip():
|
91 |
+
return "", "Please enter some text to translate."
|
92 |
+
|
93 |
+
lines = [line.strip() for line in text_list.split('\n') if line.strip()]
|
94 |
+
|
95 |
+
if not lines:
|
96 |
+
return "", "No valid text lines found."
|
97 |
+
|
98 |
+
try:
|
99 |
+
translations = []
|
100 |
+
total_time = 0
|
101 |
+
|
102 |
+
for i, line in enumerate(lines):
|
103 |
+
translation, status = translate_text(line)
|
104 |
+
if translation:
|
105 |
+
translations.append(f"{i+1}. EN: {line}")
|
106 |
+
translations.append(f" VE: {translation}")
|
107 |
+
translations.append("")
|
108 |
+
|
109 |
+
if translations:
|
110 |
+
result = "\n".join(translations)
|
111 |
+
status_msg = f"β
Successfully translated {len(lines)} lines"
|
112 |
+
return result, status_msg
|
113 |
+
else:
|
114 |
+
return "", "β No translations generated"
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
return "", f"β Batch translation error: {str(e)}"
|
118 |
+
|
119 |
+
# Load model on startup
|
120 |
+
print("Initializing model...")
|
121 |
+
model_loaded = load_model()
|
122 |
+
|
123 |
+
# Create Gradio interface
|
124 |
+
with gr.Blocks(title="English to Venda Translator", theme=gr.themes.Soft()) as demo:
|
125 |
+
|
126 |
+
gr.Markdown("""
|
127 |
+
# π English to Venda Translator
|
128 |
+
|
129 |
+
This app translates English text to Venda (Tshivenda) using the NLLB model.
|
130 |
+
Venda is a Bantu language spoken primarily in South Africa and Zimbabwe.
|
131 |
+
|
132 |
+
**Model:** `UnarineLeo/nllb_eng_ven_terms`
|
133 |
+
""")
|
134 |
+
|
135 |
+
with gr.Tab("Single Translation"):
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
input_text = gr.Textbox(
|
139 |
+
label="English Text",
|
140 |
+
placeholder="Enter English text to translate...",
|
141 |
+
lines=4,
|
142 |
+
max_lines=10
|
143 |
+
)
|
144 |
+
|
145 |
+
with gr.Row():
|
146 |
+
max_length_slider = gr.Slider(
|
147 |
+
minimum=50,
|
148 |
+
maximum=1000,
|
149 |
+
value=512,
|
150 |
+
step=50,
|
151 |
+
label="Max Translation Length"
|
152 |
+
)
|
153 |
+
|
154 |
+
num_beams_slider = gr.Slider(
|
155 |
+
minimum=1,
|
156 |
+
maximum=10,
|
157 |
+
value=5,
|
158 |
+
step=1,
|
159 |
+
label="Number of Beams (Quality vs Speed)"
|
160 |
+
)
|
161 |
+
|
162 |
+
translate_btn = gr.Button("π Translate", variant="primary")
|
163 |
+
|
164 |
+
with gr.Column():
|
165 |
+
output_text = gr.Textbox(
|
166 |
+
label="Venda Translation",
|
167 |
+
lines=4,
|
168 |
+
max_lines=10,
|
169 |
+
interactive=False
|
170 |
+
)
|
171 |
+
|
172 |
+
status_text = gr.Textbox(
|
173 |
+
label="Status",
|
174 |
+
interactive=False,
|
175 |
+
lines=1
|
176 |
+
)
|
177 |
+
|
178 |
+
# Examples
|
179 |
+
gr.Examples(
|
180 |
+
examples=[
|
181 |
+
["Hello, how are you?"],
|
182 |
+
["Good morning, everyone."],
|
183 |
+
["Thank you for your help."],
|
184 |
+
["What is your name?"],
|
185 |
+
["I am learning Venda."],
|
186 |
+
["Welcome to our school."],
|
187 |
+
["The weather is beautiful today."],
|
188 |
+
["Can you help me please?"]
|
189 |
+
],
|
190 |
+
inputs=[input_text],
|
191 |
+
label="Try these examples:"
|
192 |
+
)
|
193 |
+
|
194 |
+
with gr.Tab("Batch Translation"):
|
195 |
+
with gr.Row():
|
196 |
+
with gr.Column():
|
197 |
+
batch_input = gr.Textbox(
|
198 |
+
label="Multiple English Sentences",
|
199 |
+
placeholder="Enter multiple English sentences, one per line...",
|
200 |
+
lines=8,
|
201 |
+
max_lines=15
|
202 |
+
)
|
203 |
+
batch_translate_btn = gr.Button("π Translate All", variant="primary")
|
204 |
+
|
205 |
+
with gr.Column():
|
206 |
+
batch_output = gr.Textbox(
|
207 |
+
label="Batch Translations",
|
208 |
+
lines=8,
|
209 |
+
max_lines=15,
|
210 |
+
interactive=False
|
211 |
+
)
|
212 |
+
batch_status = gr.Textbox(
|
213 |
+
label="Status",
|
214 |
+
interactive=False,
|
215 |
+
lines=1
|
216 |
+
)
|
217 |
+
|
218 |
+
with gr.Tab("About"):
|
219 |
+
gr.Markdown("""
|
220 |
+
## About This Translator
|
221 |
+
|
222 |
+
This application uses a fine-tuned NLLB (No Language Left Behind) model specifically trained for English to Venda translation.
|
223 |
+
|
224 |
+
### Features:
|
225 |
+
- **Single Translation**: Translate individual sentences or paragraphs
|
226 |
+
- **Batch Translation**: Translate multiple sentences at once
|
227 |
+
- **Adjustable Parameters**: Control translation quality and length
|
228 |
+
- **Examples**: Try pre-loaded example sentences
|
229 |
+
|
230 |
+
### About Venda (Tshivenda):
|
231 |
+
- Spoken by approximately 1.2 million people
|
232 |
+
- Official language of South Africa
|
233 |
+
- Also spoken in Zimbabwe
|
234 |
+
- Part of the Bantu language family
|
235 |
+
|
236 |
+
### Usage Tips:
|
237 |
+
- Keep sentences reasonably short for best results
|
238 |
+
- The model works best with common, everyday language
|
239 |
+
- Higher beam numbers generally produce better quality but slower translations
|
240 |
+
|
241 |
+
### Technical Details:
|
242 |
+
- **Model**: UnarineLeo/nllb_eng_ven_terms
|
243 |
+
- **Architecture**: NLLB (No Language Left Behind)
|
244 |
+
- **Language Codes**: eng_Latn β ven_Latn
|
245 |
+
""")
|
246 |
+
|
247 |
+
# Event handlers
|
248 |
+
translate_btn.click(
|
249 |
+
fn=translate_text,
|
250 |
+
inputs=[input_text, max_length_slider, num_beams_slider],
|
251 |
+
outputs=[output_text, status_text]
|
252 |
+
)
|
253 |
+
|
254 |
+
batch_translate_btn.click(
|
255 |
+
fn=translate_batch,
|
256 |
+
inputs=[batch_input],
|
257 |
+
outputs=[batch_output, batch_status]
|
258 |
+
)
|
259 |
+
|
260 |
+
# Auto-translate on example selection
|
261 |
+
input_text.submit(
|
262 |
+
fn=translate_text,
|
263 |
+
inputs=[input_text, max_length_slider, num_beams_slider],
|
264 |
+
outputs=[output_text, status_text]
|
265 |
+
)
|
266 |
+
|
267 |
+
# Launch the app
|
268 |
+
if __name__ == "__main__":
|
269 |
+
demo.launch(
|
270 |
+
share=True,
|
271 |
+
debug=True,
|
272 |
+
show_error=True
|
273 |
+
)
|