Kartoffel161 / app.py
UnSinnlos's picture
Upload app.py
b5b5087 verified
import os
import json
import random
import torch
import numpy as np
import gradio as gr
from chatterbox.tts import ChatterboxTTS
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from torch import nn
import re
# === Einstellungen ===
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_REPO = "SebastianBodza/Kartoffelbox-v0.1"
T3_CHECKPOINT_FILE = "t3_kartoffelbox.safetensors"
MAX_CHARS = 5000
CHUNK_CHAR_LIMIT = 300
SETTINGS_DIR = "settings"
# === Init ===
if not os.path.exists(SETTINGS_DIR):
os.makedirs(SETTINGS_DIR)
MODEL = None
print(f"🚀 Running on device: {DEVICE}")
def get_or_load_model():
global MODEL
if MODEL is None:
print("Model not loaded, initializing...")
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
checkpoint_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=T3_CHECKPOINT_FILE,
token=os.environ.get("HUGGING_FACE_HUB_TOKEN", "")
)
t3_state = load_file(checkpoint_path, device="cpu")
MODEL.t3.load_state_dict(t3_state)
# Position Embeddings erweitern
pos_emb_module = MODEL.t3.text_pos_emb
old_pos = pos_emb_module.emb.num_embeddings
if MAX_CHARS > old_pos:
emb_dim = pos_emb_module.emb.embedding_dim
new_emb = nn.Embedding(MAX_CHARS, emb_dim)
with torch.no_grad():
new_emb.weight[:old_pos] = pos_emb_module.emb.weight
pos_emb_module.emb = new_emb
print(f"Expanded position embeddings: {old_pos}{MAX_CHARS}")
MODEL.t3.to(DEVICE)
MODEL.s3gen.to(DEVICE)
print(f"Model loaded. Device: {MODEL.device}")
return MODEL
try:
get_or_load_model()
except Exception as e:
print(f"CRITICAL: Failed to load model: {e}")
def set_seed(seed: int):
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
def split_text_into_chunks(text, max_length=CHUNK_CHAR_LIMIT):
sentences = re.split(r'(?<=[.!?]) +', text)
chunks = []
chunk = ""
for sentence in sentences:
if len(chunk) + len(sentence) < max_length:
chunk += " " + sentence
else:
if chunk:
chunks.append(chunk.strip())
chunk = sentence
if chunk:
chunks.append(chunk.strip())
return chunks
# === Einstellungen speichern/laden ===
def list_presets():
return [f[:-5] for f in os.listdir(SETTINGS_DIR) if f.endswith(".json") and f != "last.json"]
def load_preset(name):
path = os.path.join(SETTINGS_DIR, name + ".json")
if os.path.exists(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
return None
def save_preset(name, data):
path = os.path.join(SETTINGS_DIR, name + ".json")
with open(path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
save_preset("last", data) # Als "zuletzt genutzt" speichern
def generate_tts_audio(text_input, audio_prompt_path_input, exaggeration_input, temperature_input, seed_num_input, cfgw_input):
model = get_or_load_model()
if seed_num_input != 0:
set_seed(int(seed_num_input))
full_audio = []
chunks = split_text_into_chunks(text_input[:MAX_CHARS])
print(f"Text wird in {len(chunks)} Teile aufgeteilt…")
for i, chunk in enumerate(chunks):
print(f"▶️ Teil {i+1}/{len(chunks)}: {chunk[:60]}...")
wav = model.generate(
chunk,
audio_prompt_path=audio_prompt_path_input,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
full_audio.append(wav.squeeze(0).cpu().numpy())
audio_concat = np.concatenate(full_audio)
return (model.sr, audio_concat)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# 🥔 Kartoffel-TTS (Chatterbox)\nLangtext → Sprachstil mit Profilen")
with gr.Row():
with gr.Column():
preset_dropdown = gr.Dropdown(label="🔄 Preset wählen", choices=list_presets(), value=None)
preset_name = gr.Textbox(label="📝 Name zum Speichern", value="mein-profil")
text = gr.Textbox(
value="Hier kannst du einen längeren deutschen Text eingeben…",
label=f"Text (max {MAX_CHARS} Zeichen)",
max_lines=12
)
ref_wav = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Referenz-Audiodatei (optional)",
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac"
)
exaggeration = gr.Slider(0.25, 2, step=.05, label="Exaggeration", value=.5)
cfg_weight = gr.Slider(0.2, 1, step=.05, label="CFG/Pace", value=0.3)
with gr.Accordion("Weitere Optionen", open=False):
seed_num = gr.Number(value=0, label="Zufalls-Seed (0 = zufällig)")
temp = gr.Slider(0.05, 5, step=.05, label="Temperature", value=.6)
save_btn = gr.Button("💾 Einstellungen speichern")
run_btn = gr.Button("🎤 Audio generieren")
with gr.Column():
audio_output = gr.Audio(label="🔊 Ergebnis")
# Funktionen zuweisen
def on_preset_selected(name):
if name:
p = load_preset(name)
if p:
return p["exaggeration"], p["temperature"], p["seed"], p["cfg"]
return gr.update(), gr.update(), gr.update(), gr.update()
preset_dropdown.change(
on_preset_selected,
inputs=[preset_dropdown],
outputs=[exaggeration, temp, seed_num, cfg_weight]
)
def save_current_settings(name, exaggeration, temperature, seed, cfg):
save_preset(name, {
"exaggeration": exaggeration,
"temperature": temperature,
"seed": seed,
"cfg": cfg
})
return gr.update(choices=list_presets())
save_btn.click(
fn=save_current_settings,
inputs=[preset_name, exaggeration, temp, seed_num, cfg_weight],
outputs=[preset_dropdown]
)
run_btn.click(
fn=generate_tts_audio,
inputs=[text, ref_wav, exaggeration, temp, seed_num, cfg_weight],
outputs=[audio_output],
)
# Letztes Profil beim Start laden
if os.path.exists(os.path.join(SETTINGS_DIR, "last.json")):
last = load_preset("last")
if last:
exaggeration.value = last["exaggeration"]
temp.value = last["temperature"]
seed_num.value = last["seed"]
cfg_weight.value = last["cfg"]
# 👇 ROBUSTER START – wichtig für exe ohne Konsole!
demo.launch(
quiet=True,
show_error=True,
prevent_thread_lock=False
)