Spaces:
Running
Running
File size: 7,142 Bytes
b5b5087 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import os
import json
import random
import torch
import numpy as np
import gradio as gr
from chatterbox.tts import ChatterboxTTS
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from torch import nn
import re
# === Einstellungen ===
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_REPO = "SebastianBodza/Kartoffelbox-v0.1"
T3_CHECKPOINT_FILE = "t3_kartoffelbox.safetensors"
MAX_CHARS = 5000
CHUNK_CHAR_LIMIT = 300
SETTINGS_DIR = "settings"
# === Init ===
if not os.path.exists(SETTINGS_DIR):
os.makedirs(SETTINGS_DIR)
MODEL = None
print(f"🚀 Running on device: {DEVICE}")
def get_or_load_model():
global MODEL
if MODEL is None:
print("Model not loaded, initializing...")
MODEL = ChatterboxTTS.from_pretrained(DEVICE)
checkpoint_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=T3_CHECKPOINT_FILE,
token=os.environ.get("HUGGING_FACE_HUB_TOKEN", "")
)
t3_state = load_file(checkpoint_path, device="cpu")
MODEL.t3.load_state_dict(t3_state)
# Position Embeddings erweitern
pos_emb_module = MODEL.t3.text_pos_emb
old_pos = pos_emb_module.emb.num_embeddings
if MAX_CHARS > old_pos:
emb_dim = pos_emb_module.emb.embedding_dim
new_emb = nn.Embedding(MAX_CHARS, emb_dim)
with torch.no_grad():
new_emb.weight[:old_pos] = pos_emb_module.emb.weight
pos_emb_module.emb = new_emb
print(f"Expanded position embeddings: {old_pos} → {MAX_CHARS}")
MODEL.t3.to(DEVICE)
MODEL.s3gen.to(DEVICE)
print(f"Model loaded. Device: {MODEL.device}")
return MODEL
try:
get_or_load_model()
except Exception as e:
print(f"CRITICAL: Failed to load model: {e}")
def set_seed(seed: int):
torch.manual_seed(seed)
if DEVICE == "cuda":
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
def split_text_into_chunks(text, max_length=CHUNK_CHAR_LIMIT):
sentences = re.split(r'(?<=[.!?]) +', text)
chunks = []
chunk = ""
for sentence in sentences:
if len(chunk) + len(sentence) < max_length:
chunk += " " + sentence
else:
if chunk:
chunks.append(chunk.strip())
chunk = sentence
if chunk:
chunks.append(chunk.strip())
return chunks
# === Einstellungen speichern/laden ===
def list_presets():
return [f[:-5] for f in os.listdir(SETTINGS_DIR) if f.endswith(".json") and f != "last.json"]
def load_preset(name):
path = os.path.join(SETTINGS_DIR, name + ".json")
if os.path.exists(path):
with open(path, "r", encoding="utf-8") as f:
return json.load(f)
return None
def save_preset(name, data):
path = os.path.join(SETTINGS_DIR, name + ".json")
with open(path, "w", encoding="utf-8") as f:
json.dump(data, f, indent=2)
save_preset("last", data) # Als "zuletzt genutzt" speichern
def generate_tts_audio(text_input, audio_prompt_path_input, exaggeration_input, temperature_input, seed_num_input, cfgw_input):
model = get_or_load_model()
if seed_num_input != 0:
set_seed(int(seed_num_input))
full_audio = []
chunks = split_text_into_chunks(text_input[:MAX_CHARS])
print(f"Text wird in {len(chunks)} Teile aufgeteilt…")
for i, chunk in enumerate(chunks):
print(f"▶️ Teil {i+1}/{len(chunks)}: {chunk[:60]}...")
wav = model.generate(
chunk,
audio_prompt_path=audio_prompt_path_input,
exaggeration=exaggeration_input,
temperature=temperature_input,
cfg_weight=cfgw_input,
)
full_audio.append(wav.squeeze(0).cpu().numpy())
audio_concat = np.concatenate(full_audio)
return (model.sr, audio_concat)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("# 🥔 Kartoffel-TTS (Chatterbox)\nLangtext → Sprachstil mit Profilen")
with gr.Row():
with gr.Column():
preset_dropdown = gr.Dropdown(label="🔄 Preset wählen", choices=list_presets(), value=None)
preset_name = gr.Textbox(label="📝 Name zum Speichern", value="mein-profil")
text = gr.Textbox(
value="Hier kannst du einen längeren deutschen Text eingeben…",
label=f"Text (max {MAX_CHARS} Zeichen)",
max_lines=12
)
ref_wav = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
label="Referenz-Audiodatei (optional)",
value="https://storage.googleapis.com/chatterbox-demo-samples/prompts/female_shadowheart4.flac"
)
exaggeration = gr.Slider(0.25, 2, step=.05, label="Exaggeration", value=.5)
cfg_weight = gr.Slider(0.2, 1, step=.05, label="CFG/Pace", value=0.3)
with gr.Accordion("Weitere Optionen", open=False):
seed_num = gr.Number(value=0, label="Zufalls-Seed (0 = zufällig)")
temp = gr.Slider(0.05, 5, step=.05, label="Temperature", value=.6)
save_btn = gr.Button("💾 Einstellungen speichern")
run_btn = gr.Button("🎤 Audio generieren")
with gr.Column():
audio_output = gr.Audio(label="🔊 Ergebnis")
# Funktionen zuweisen
def on_preset_selected(name):
if name:
p = load_preset(name)
if p:
return p["exaggeration"], p["temperature"], p["seed"], p["cfg"]
return gr.update(), gr.update(), gr.update(), gr.update()
preset_dropdown.change(
on_preset_selected,
inputs=[preset_dropdown],
outputs=[exaggeration, temp, seed_num, cfg_weight]
)
def save_current_settings(name, exaggeration, temperature, seed, cfg):
save_preset(name, {
"exaggeration": exaggeration,
"temperature": temperature,
"seed": seed,
"cfg": cfg
})
return gr.update(choices=list_presets())
save_btn.click(
fn=save_current_settings,
inputs=[preset_name, exaggeration, temp, seed_num, cfg_weight],
outputs=[preset_dropdown]
)
run_btn.click(
fn=generate_tts_audio,
inputs=[text, ref_wav, exaggeration, temp, seed_num, cfg_weight],
outputs=[audio_output],
)
# Letztes Profil beim Start laden
if os.path.exists(os.path.join(SETTINGS_DIR, "last.json")):
last = load_preset("last")
if last:
exaggeration.value = last["exaggeration"]
temp.value = last["temperature"]
seed_num.value = last["seed"]
cfg_weight.value = last["cfg"]
# 👇 ROBUSTER START – wichtig für exe ohne Konsole!
demo.launch(
quiet=True,
show_error=True,
prevent_thread_lock=False
)
|