|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import spaces |
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, ControlNetModel |
|
from diffusers.utils import load_image |
|
import torch |
|
from typing import Tuple |
|
from PIL import Image |
|
from controlnet_aux import OpenposeDetector |
|
import insightface |
|
import onnxruntime |
|
|
|
ip_adapter_loaded = False |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model_repo_id = "RunDiffusion/Juggernaut-XL-v9" |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"RunDiffusion/Juggernaut-XL-v9", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
custom_pipeline="lpw_stable_diffusion_xl", |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
variant="fp16", |
|
) |
|
pipe.to(device) |
|
|
|
controlnet_openpose = ControlNetModel.from_pretrained( |
|
"lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16 |
|
).to(device) |
|
|
|
openpose_detector = OpenposeDetector.from_pretrained("lllyasviel/ControlNet").to(device) |
|
|
|
try: |
|
pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder="", weight_name="ip-adapter-faceid_sdxl_lora.safetensors") |
|
ip_adapter_loaded = True |
|
except Exception as e: |
|
print(f"Could not load IP-Adapter FaceID. Make sure the model exists and paths are correct: {e}") |
|
print("Trying a common alternative: ip-adapter-plus-face_sdxl_vit-h.safetensors") |
|
try: |
|
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors") |
|
except Exception as e2: |
|
print(f"Could not load second IP-Adapter variant: {e2}") |
|
print("IP-Adapter will not be available. Please check your IP-Adapter setup.") |
|
pipe.unload_ip_adapter() |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 4096 |
|
|
|
style_list = [ |
|
{ |
|
"name": "(No style)", |
|
"prompt": "{prompt}", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "(No style)" |
|
|
|
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: |
|
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) |
|
if not negative: |
|
negative = "" |
|
return p.replace("{prompt}", positive), n + negative |
|
|
|
@spaces.GPU |
|
def infer( |
|
prompt, |
|
negative_prompt, |
|
style, |
|
input_image_pose, |
|
pose_strength, |
|
input_image_face, |
|
face_fidelity, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
controlnet_images = [] |
|
controlnet_conditioning_scales = [] |
|
controlnet_models_to_use = [] |
|
|
|
|
|
if input_image_pose: |
|
processed_pose_image = openpose_detector(input_image_pose) |
|
controlnet_images.append(processed_pose_image) |
|
controlnet_conditioning_scales.append(pose_strength) |
|
controlnet_models_to_use.append(controlnet_openpose) |
|
|
|
|
|
|
|
if input_image_face and ip_adapter_loaded: |
|
pipe.set_ip_adapter_scale(face_fidelity) |
|
else: |
|
|
|
|
|
if hasattr(pipe, 'lora_scale') and pipe.lora_scale is not None: |
|
pipe.set_ip_adapter_scale(0.0) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=controlnet_images if controlnet_images else None, |
|
controlnet_conditioning_scale=controlnet_conditioning_scales if controlnet_conditioning_scales else None, |
|
controlnet=controlnet_models_to_use if controlnet_models_to_use else None, |
|
|
|
ip_adapter_image=input_image_face if input_image_face and ip_adapter_loaded else None, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
examples = [ |
|
"A stunning woman standing on a beach at sunset, dramatic lighting, highly detailed", |
|
"A man in a futuristic city, cyberpunk style, neon lights", |
|
"An AI model posing with a friendly robot in a studio, professional photoshoot", |
|
] |
|
css = """#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
}""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" # AI Instagram Model Creator") |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Describe your AI model and scene (e.g., 'A confident woman in a red dress, city background')", |
|
container=False, |
|
) |
|
run_button = gr.Button("Generate", scale=0, variant="primary") |
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Reference Images", open=True): |
|
gr.Markdown("Upload images to control pose and face consistency.") |
|
input_image_pose = gr.Image(label="Human Pose Reference (for body posture)", type="pil", show_label=True) |
|
pose_strength = gr.Slider( |
|
label="Pose Control Strength (0.0 = ignore, 1.0 = strict adherence)", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.01, |
|
value=0.8, |
|
) |
|
gr.Markdown("---") |
|
|
|
input_image_face = gr.Image(label="Face Reference (for facial consistency)", type="pil", show_label=True) |
|
face_fidelity = gr.Slider( |
|
label="Face Fidelity (0.0 = ignore, 1.0 = highly similar)", |
|
minimum=0.0, |
|
maximum=1.0, |
|
step=0.01, |
|
value=0.7, |
|
) |
|
|
|
with gr.Row(visible=True): |
|
style_selection = gr.Radio( |
|
show_label=True, |
|
container=True, |
|
interactive=True, |
|
choices=STYLE_NAMES, |
|
value=DEFAULT_STYLE_NAME, |
|
label="Image Style", |
|
) |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="What you DON'T want in the image (e.g., 'deformed, blurry, text')", |
|
visible=False, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=768, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.1, |
|
value=7.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=60, |
|
) |
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
style_selection, |
|
input_image_pose, |
|
pose_strength, |
|
input_image_face, |
|
face_fidelity, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |
|
|