File size: 11,958 Bytes
3ebabb5
 
 
8af5338
 
 
3ebabb5
edff4a8
8af5338
 
 
 
3ebabb5
fccbc96
 
3ebabb5
ab1e732
902b92c
3ebabb5
 
 
 
d9ef2cf
3ebabb5
e90137c
 
 
 
 
 
 
 
 
 
3ebabb5
8af5338
44a2f42
8af5338
 
b384959
8af5338
 
c46f584
fccbc96
8af5338
 
 
 
 
 
 
 
 
eb46155
3ebabb5
7b743a3
3ebabb5
1a90943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebabb5
062bc96
 
 
 
 
 
8af5338
3ebabb5
 
 
062bc96
b4fcb00
 
 
 
3ebabb5
 
 
 
 
 
 
 
 
 
062bc96
3ebabb5
 
8af5338
 
 
b4fcb00
8af5338
 
 
 
 
 
 
 
b4fcb00
 
8af5338
b4fcb00
 
 
 
 
3ebabb5
8af5338
 
 
b4fcb00
8af5338
 
b4fcb00
 
8af5338
 
 
 
 
 
 
 
3ebabb5
 
8af5338
 
 
3ebabb5
8af5338
3ebabb5
 
8af5338
3ebabb5
 
 
8af5338
3ebabb5
 
 
 
 
8af5338
3ebabb5
 
8af5338
3ebabb5
 
8af5338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb46155
1a90943
 
 
 
 
 
 
 
 
3ebabb5
 
 
 
8af5338
3ebabb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8af5338
3ebabb5
 
 
 
 
 
52386fc
3ebabb5
 
 
 
 
8af5338
3ebabb5
8af5338
3ebabb5
 
 
 
d78b43c
3ebabb5
52386fc
3ebabb5
 
8af5338
3ebabb5
 
 
 
 
 
062bc96
8af5338
 
 
 
3ebabb5
 
 
 
 
 
 
 
 
 
 
d9ef2cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, ControlNetModel
from diffusers.utils import load_image
import torch
from typing import Tuple
from PIL import Image
from controlnet_aux import OpenposeDetector
import insightface
import onnxruntime

ip_adapter_loaded = False

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "RunDiffusion/Juggernaut-XL-v9"  # Replace to the model you would like to use
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = StableDiffusionXLPipeline.from_pretrained(
        "RunDiffusion/Juggernaut-XL-v9",
        vae=vae,
        torch_dtype=torch.float16,
        custom_pipeline="lpw_stable_diffusion_xl",
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16",
    )
pipe.to(device)

controlnet_openpose = ControlNetModel.from_pretrained(
    "lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch.float16
).to(device)

openpose_detector = OpenposeDetector.from_pretrained("lllyasviel/ControlNet").to(device)

try:
    pipe.load_ip_adapter("h94/IP-Adapter-FaceID", subfolder="", weight_name="ip-adapter-faceid_sdxl_lora.safetensors")
    ip_adapter_loaded = True
except Exception as e:
    print(f"Could not load IP-Adapter FaceID. Make sure the model exists and paths are correct: {e}")
    print("Trying a common alternative: ip-adapter-plus-face_sdxl_vit-h.safetensors")
    try:
        pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors")
    except Exception as e2:
        print(f"Could not load second IP-Adapter variant: {e2}")
        print("IP-Adapter will not be available. Please check your IP-Adapter setup.")
        pipe.unload_ip_adapter()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]   

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

@spaces.GPU
def infer(
    prompt,
    negative_prompt,
    style,
    input_image_pose,
    pose_strength,
    input_image_face,
    face_fidelity,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
    generator = torch.Generator().manual_seed(seed)

    controlnet_images = []
    controlnet_conditioning_scales = []
    controlnet_models_to_use = []
    
    # Process Pose Reference
    if input_image_pose:
        processed_pose_image = openpose_detector(input_image_pose)
        controlnet_images.append(processed_pose_image)
        controlnet_conditioning_scales.append(pose_strength)
        controlnet_models_to_use.append(controlnet_openpose)

    # Process Face Reference (IP-Adapter)
    # CORRECTED LINE HERE: Use the 'ip_adapter_loaded' flag
    if input_image_face and ip_adapter_loaded: # Use the flag to check if IP-Adapter loaded successfully
        pipe.set_ip_adapter_scale(face_fidelity)
    else:
        # If no face input or IP-Adapter failed to load, ensure scale is reset or not applied
        # This check is for the general 'lora_scale' attribute which IP-Adapter uses
        if hasattr(pipe, 'lora_scale') and pipe.lora_scale is not None:
             pipe.set_ip_adapter_scale(0.0) # Reset scale to 0.0

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=controlnet_images if controlnet_images else None,
        controlnet_conditioning_scale=controlnet_conditioning_scales if controlnet_conditioning_scales else None,
        controlnet=controlnet_models_to_use if controlnet_models_to_use else None,
        # Only pass ip_adapter_image if there's an input_image_face AND the IP-Adapter was successfully loaded
        ip_adapter_image=input_image_face if input_image_face and ip_adapter_loaded else None,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "A stunning woman standing on a beach at sunset, dramatic lighting, highly detailed",
    "A man in a futuristic city, cyberpunk style, neon lights",
    "An AI model posing with a friendly robot in a studio, professional photoshoot",
]
css = """#col-container {
    margin: 0 auto;
    max-width: 640px;
}"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # AI Instagram Model Creator")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Describe your AI model and scene (e.g., 'A confident woman in a red dress, city background')",
                container=False,
            )
            run_button = gr.Button("Generate", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Reference Images", open=True):
            gr.Markdown("Upload images to control pose and face consistency.")
            input_image_pose = gr.Image(label="Human Pose Reference (for body posture)", type="pil", show_label=True)
            pose_strength = gr.Slider(
                label="Pose Control Strength (0.0 = ignore, 1.0 = strict adherence)",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.8, # Good starting point for strong pose control
            )
            gr.Markdown("---") # Separator

            input_image_face = gr.Image(label="Face Reference (for facial consistency)", type="pil", show_label=True)
            face_fidelity = gr.Slider(
                label="Face Fidelity (0.0 = ignore, 1.0 = highly similar)",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=0.7, # Good starting point for face transfer
            )

        with gr.Row(visible=True):
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="What you DON'T want in the image (e.g., 'deformed, blurry, text')",
                visible=False,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0, # Increased max for more control
                    step=0.1,
                    value=7.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=1000, # More typical steps for SDXL (20-50 usually sufficient)
                    step=1,
                    value=60,
                )
        gr.Examples(examples=examples, inputs=[prompt])

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            input_image_pose,
            pose_strength,
            input_image_face,
            face_fidelity,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)